

Kintore Hydrogen Facility

Appendix 13.1: Water Quality Monitoring Data

Kintore Hydrogen Ltd

Prepared by:

SLR Consulting Limited

No. 50 Stirling Business Centre, Wellgreen, Stirling, FK8 2DZ

SLR Project No.: 428.013099.00001

Planning Application No: ENQ/2024/0415

18 July 2024

Revision: 01

SLR Project No.: 428.013099.00001

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By				
01	18 July 2024	J Turnbull	K Rainford	G Robb				
	Click to enter a date.							
	Click to enter a date.							
	Click to enter a date.							
	Click to enter a date.							

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with Kintore Hydrogen Ltd (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

Basis of Report	i
1.0 Water Quality Monitoring Data	3
Tables in Text	
Table 1-1: Summary of Water Quality Monitoring Data .	3

Annexes

Annex A Water Quality Graphs
Annex B Laboratory Certificates

Annex C Piper Diagram

1.0 Water Quality Monitoring Data

This Appendix presents the water quality data which has been collected by SLR Consulting Limited at the consented abstraction point from the River Don (see Figure 13.1). Monthly monitoring has been undertaken between November 2022 and July 2023.

Plots of the monitoring data are shown in Annex A, laboratory test certificates in Annex B and a piper diagram as Annex C. A summary of the data collected is given in Table 1-1.

Table 1-1: Summary of Water Quality Monitoring Data

Analytical Parameter	Units	EQS	16/11/2022	05/12/2022	17/01/2023	09/03/2023	11/05/2023	06/07/2023	01/08/2023	07/09/2023	11/10/2023	16/11/2023	18/12/2023	23/01/2024	22/02/2024	21/03/2024	17/04/2024	23/05/2024	20/06/2024	02/07/2024
pH	pH Units	5.10 (humic)	7.20	7.80	7.60	7.40	7.80	7.70	7.50	7.60	7.20	7.50	7.40	7.40	6.90	7.20	7.50	7.30	6.90	7.60
		6.60 (Clear)	1.25									1100			0.00			1100	3.33	
Electrical Conductivity at 20 °C	μS/cm	-	160	200	180	270	170	190	180	190	150	140	170	130	177	173	147	181	145	190
Turbidity	NTU	-	17.00	< 1.0	< 1.0	1.40	2.10	1.70	2.80	< 1.0	1.00	1.60	< 1.0	6.20	< 1.0	< 1.0	6.00	8.60	< 1.0	2.00
Sulphate as SO4	μg/l	400	8360	9830	8820	11000	9630	9350	9160	9390	8810	7090	9040	7800	10100	8430	7520	8510	7940	9220
Sulphate as SO4	mg/l	250	8.36	9.83	8.82	11.00	9.63	9.35	9.16	9.40	8.81	7.09	9.04	7.80	10.10	8.43	7.52	8.51	7.94	9.22
Chloride	mg/l	-	18	25	23	40	20	21	19	22	18	18	18	19	20	21	18	20	17	20
Silicon (total)	μg/l	-	5600	6600	7100	6500	5200	6200	3600	6800	3700	2500	2000	1700	2400	7200	6500	7000	4900	7000
Fluoride	μg/l	500	76	82	55	68	60	53	57	53	67	62	59	< 50	62	69	<50	57	< 50	59
Ammoniacal Nitrogen as NH4	μg/l	-	< 15	86	110	84	110	610	58	85	190	5700	46	39	61	58	6300	57	170	< 15
Total Organic Carbon (TOC)	mg/l	-	12.30	4.28	3.82	2.58	6.97	2.57	3.30	2.78	9.16	6.18	3.45	5.50	2.85	3.02	4.00	2.69	6.00	2.49
Nitrate as N	mg/l	-	2.16	3.26	3.40	2.83	2.51	2.33	2.03	2.48	2.25	2.47	3.21	1.84	3.19	3.17	2.19	2.41	2.07	2.77
Nitrate as NO3	mg/l	-	9.54	14.40	15.10	12.50	11.10	10.30	8.97	11.00	9.96	10.90	14.20	8.15	14.10	14.10	9.69	10.70	9.17	12.30
Nitrite as N	μg/l	-	17.0	12.0	25.0	8.8	16.0	34.0	60	27	6.3	2.3	3.9	2.5	7.5	17	6.3	27.0	19.0	69.0
Nitrite as NO2	μg/l	-	54.0	40.0	81.0	29.0	52.0	110.0	200.0	87.0	21.0	7.4	13.0	8.4	25.0	55.0	21.0	88.0	63.0	230.0
Alkalinity as CaCO3 (titration)	mg/l	-	24	33	45	58	45	52	51	56	36	36	38	18	28	29	35	51	28	50
Alkalinity as CaCO3	mg/l	-	22	22	35	42	35	50	53	59	31	35	37	17	22	25	29	43	24	41
Chemical Oxygen Demand (Total)	mg/l	-	38.0	21.0	14.0	12.0	13.0	13.0	13.0	5.4	20.0	16.0	8.4	21.0	6.7	12.0	14.0	3.6	11.0	7.6
Total Oxidised Nitrogen (TON)	mg/l	25	2.2	3.3	3.4	2.8	2.5	2.4	2.1	2.5	2.3	2.5	3.2	1.8	3.2	3.2	2.2	2.4	2.1	2.8
Total Suspended Solids	mg/l	-	58	< 2.0	4	< 2.0	21	2	4	4	9	6	< 2.0	9	5	< 2.0	9	< 2.0	7	2
Total Dissolved Solids (Gravimetric)	mg/l	-	100	140	130	200	130	160	120	120	120	58	110	72	130	150	14	120	98	100
Dissolved Organic Carbon (DOC)	mg/l	-	10.30	4.24	3.62	2.56	6.35	2.55	3.26	2.41	9.45	5.82	3.10	5.18	2.57	2.67	3.89	2.54	5.98	2.36
Hardness - Total	mg- CaCO3/I	-	48.6	55.8	55.7	66.6	61.2	66.5	62.5	69.3	48.0	44.6	55.0	43.6	56.8	55.2	48.1	57.8	49.6	64.9
Bicarbonate as HCO3 (titration)	mg/l	-	30	41	54	71	54	64	62	69	44	43	46	22	34	30	36	52	29	50
Bromide	mg/l	-	0.03	0.05	0.04	0.10	0.04	0.04	0.037	0.038	0.026	0.046	0.044	0.040	0.055	< 0.002	0.04	0.046	0.021	0.033
Bromate by IC	mg/l	-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Carbonate Alkalinity as CO3	mg- CO3/I	-	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Boron (dissolved)	μg/l	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	11	< 10	11.00	11.00	11.00	< 10	< 10	< 10	< 10	< 10

Analytical Parameter	Units	EQS	16/11/2022	05/12/2022	17/01/2023	09/03/2023	11/05/2023	06/07/2023	01/08/2023	07/09/2023	11/10/2023	16/11/2023	18/12/2023	23/01/2024	22/02/2024	21/03/2024	17/04/2024	23/05/2024	20/06/2024	02/07/2024
Calcium (dissolved)	mg/l	-	13	15	14	17	16	18	16	18	13	12	14	11	15	14	12	15	13	17
Iron (dissolved)	mg/l	1	0.09	0.04	0.03	0.04	0.06	0.03	0.05	0.03	0.09	0.08	0.05	0.09	0.06	0.04	0.04	0.02	0.07	0.01
Magnesium (dissolved)	mg/l	-	3.9	4.7	4.9	5.6	5.1	5.5	5.3	5.8	4.0	3.7	4.7	3.8	4.9	4.7	4.1	4.9	4.2	5.4
Potassium (dissolved)	mg/l	-	3.0	1.8	1.3	1.7	1.4	1.5	2.0	1.4	1.7	1.3	1.4	1.6	1.5	1.2	1.2	1.4	1.2	1.2
Sodium (dissolved)	mg/l	-	10	14	13	24	13	13	14	14.0	11	9.2	11	13	14.0	11	11	12.0	10.0	13.0
Aluminium (total)	mg/l	-	0.280	0.0968	0.0517	0.0356	0.157	0.0382	0.075	0.0167	0.0604	0.0772	0.0684	0.101	0.058	0.052	0.043	0.038	0.067	0.014
Antimony (total)	μg/l	-	0.50	0.70	0.70	0.40	0.70	< 0.4	0.70	0.40	< 0.4	< 0.4	0.40	< 0.4	0.80	< 0.4	0.90	< 0.4	0.90	0.50
Arsenic (total)	μg/l	-	0.48	0.29	0.21	0.20	0.30	0.31	0.40	0.29	0.33	0.25	0.31	0.21	0.24	0.26	0.26	0.30	0.28	0.25
Barium (total)	μg/l	-	52	45	40	41	37	40	34	33	31	38	45	30	34	34	28	30	24	30
Boron (total)	μg/l	2000	13	12	11	< 10	11	< 10	13	< 10	15	< 10	11	18	13	< 10	< 10	< 10	< 10	< 10
Cadmium (total)	μg/l	-	0.07	0.05	0.03	0.03	0.03	< 0.02	0.04	< 0.02	< 0.02	0.03	0.04	0.03	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02
Chromium (total)	μg/l	-	0.70	0.50	0.40	0.60	0.50	1.00	0.70	0.60	1.10	0.60	1.10	0.90	0.80	0.80	0.80	0.40	0.40	1.20
Iron (total)	mg/l	-	0.15	0.25	0.15	0.19	0.35	0.11	0.18	0.11	0.33	0.18	0.17	0.24	0.21	0.26	0.30	0.37	0.33	0.13
Manganese (total)	μg/l	123	89	24	23	23	28	22	33	12	12	18	28	21	33	23	17	1	20	19
Molybdenum (total)	μg/l	-	0.41	0.49	0.39	0.92	0.26	0.56	0.80	0.58	0.49	0.63	0.22	0.65	0.19	0.53	0.35	0.32	0.24	0.30
	μg/l	4	3.1	1.6	1.4	1.0	1.4	1.3	1.7	1.1	1.9	1.7	1.4	2.5	1.8	1.1	1.5	1.0	1.2	0.7
	μg/l	-	< 0.6	< 0.6	< 0.6	0.60	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Tin (total)	μg/l	25	0.43	0.29	0.51	0.96	0.30	2.00	0.73	1.80	< 0.20	< 0.20	0.40	3.30	<1.0	1.20	0.82	0.97	1.10	2.10
Zinc (total)	μg/l	10.9	13	17	10	11	21	13	27	5.40	9.50	50	14	22	4	9	23	3	6	12
Calcium (total)	mg/l	-	14	15	15	18	16	18	17	19	13	12	15	12	15	15	14	16	13	18
Magnesium (total)	mg/l	-	4.1	4.8	5.0	5.9	5.2	5.8	5.5	6.1	4.2	3.9	5.0	3.7	5.0	5.0	4.7	5.4	4.2	5.7
Potassium (total)	mg/l	-	3.7	2.6	1.5	2.0	1.6	1.5	2.3	1.4	1.9	1.4	1.5	1.4	1.8	2.0	1.3	1.4	1.3	1.1
Sodium (total)	mg/l	-	12	15	13	25	13	14	17	14	12	9	11	12	15	14	13	13	11	13
	mg/l	-	0.047	0.022	0.020	0.012	0.032	0.006	0.011	0.0042	0.039	0.062	0.021	0.042	0.018	0.013	0.015	0.006	0.025	0.006
Aluminium (dissolved)	μg/l	-	47	22	20	12	32	6	11	4.2	39	62	21	42	18	13	15	6	25	6
Antimony (dissolved)	μg/l	-	< 0.4	0.50	< 0.4	< 0.4	< 0.4	< 0.4	0.50	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.80	< 0.4	0.40	< 0.4	0.40	0.50
Arsenic (dissolved)	μg/l	50	0.28	0.22	0.18	0.16	0.24	0.30	0.33	0.28	0.30	0.22	0.20	0.18	0.20	0.21	0.19	0.24	0.22	0.22
Barium (dissolved)	μg/l	-	36	40	38	38	33	38	30	33	30	32	34	27	32	34	26	30	23	32
Cadmium (dissolved)	μg/l	≤0.45	0.03	< 0.02	0.02	< 0.02	0.02	0.02	0.03	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	μg/l	3.4	0.3	0.3	0.3	0.4	0.4	0.8	0.5	0.4	0.7	0.6	1.1	0.5	0.6	0.7	0.4	0.4	0.3	0.5
Copper (dissolved)	μg/l	1	2.4	2.5	4.5	1.9	3.2	10.0	6.9	3.8	14.0	6.7	3.0	3.0	2.3	2.4	4.2	1.3	3.3	3.1
Manganese (dissolved)	μg/l	123	1.30	4.90	12.00	13.00	4.70	1.30	1.90	0.78	3.80	9.70	9.10	8.50	13.00	7.30	4.80	0.71	1.00	0.26
Molybdenum (dissolved)	μg/l	-	0.37	0.37	0.33	0.31	0.25	0.46	0.78	0.33	0.46	0.23	0.21	0.24	0.19	0.25	0.22	0.31	0.23	0.25
Nickel (dissolved)	μg/l	4	1.4	1.0	1.2	0.8	1.1	1.0	1.1	0.7	1.8	1.4	1.1	1.3	1.0	0.9	1.0	0.6	0.8	0.6
Selenium (dissolved)	μg/l	-	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Tin (dissolved)	μg/l	-	0.40	< 0.20	0.40	0.44	0.23	0.76	0.97	0.58	< 0.20	< 0.20	0.23	0.20	0.33	0.27	< 0.20	0.23	0.82	< 0.20
Zinc (dissolved)	μg/l	10.9	2.8	2.0	4.2	3.0	8.9	7.8	13.0	4.9	1.7	11.0	7.2	4.4	2.7	4.8	7.4	1.6	2.3	2.5
Copper (total)	μg/l	1	15.0	15.0	5.2	6.9	4.9	16.0	63.0	10.0	26.0	10.0	13.0	18.0	10.0	11.0	7.9	3.4	35.0	4.4

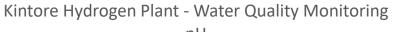
18 July 2024 SLR Project No.: 428.013099.00001

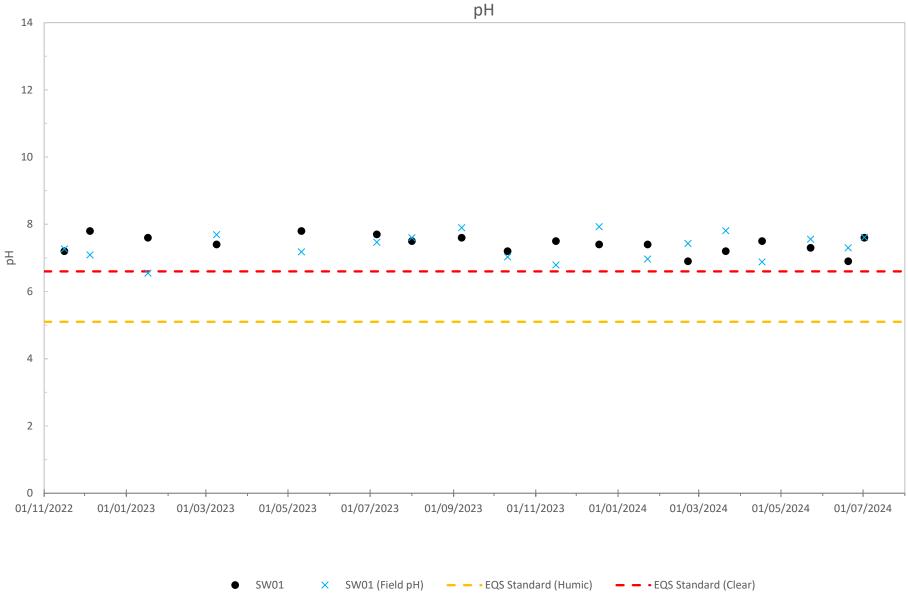
Analytical Parameter	Units	EQS	16/11/2022	05/12/2022	17/01/2023	09/03/2023	11/05/2023	06/07/2023	01/08/2023	07/09/2023	11/10/2023	16/11/2023	18/12/2023	23/01/2024	22/02/2024	21/03/2024	17/04/2024	23/05/2024	20/06/2024	02/07/2024
			·	·					Fie	ld Data										
pН	pH Units	-	7.27	7.09	6.55	7.67	7.18	7.47	7.60	7.90	7.03	6.79	7.93	6.97	7.43	7.81	6.88	7.56	7.30	7.61
Electrical Conductivity	μS/cm	-	154.71	203.82	193.34	264.47	193.08	209.43	177.90	219.59	157.25	156.29	182.31	154.91	201.27	188.34	175.26	212.79	153.11	197.23
Temperature	°C	-	8.80	5.56	1.77	2.72	11.86	15.81	14.85	17.27	10.99	5.82	7.40	3.81	5.26	6.74	6.21	12.97	14.30	13.61
Oxydation Reduction Potential (mV)	mV	-	91.90	160.20	190.35	164.45	160.30	172.50	135.26	178.50	275.50	191.20	178.30	200.45	149.00	134.60	221.60	111.32	171.30	190.90
Dissolved Oxygen	mg/l	-	10.60	12.50	13.51	14.16	10.69	10.74	9.84	9.97	10.01	12.09	11.72	12.73	12.19	12.19	12.24	9.98	9.78	10.56
	%	-	93.92	97.72	100.33	106.27	98.80	109.37	99.09	103.03	91.75	97.16	98.17	98.99	100.31	100.76	104.24	95.37	95.50	101.93
Turbidity	NTU	-	12.62	6.40	3.02	2.17	23.25	5.30	0.00	0.00	6.80	3.90	5.25	6.79	0.89	5.04	2.82	4.93	6.48	2.87
Total Dissolved Solids	ppt	-	0.10	0.13	0.12	0.17	0.13	0.14	0.12	0.14	0.10	0.10	0.12	0.10	0.13	0.12	0.11	0.14	0.10	0.13
Colour		-	STRAW	CLEAR	STRAW	STRAW	STRAW	CLEAR	PALE BROWN	CLEAR	CLEAR									
Flow / Water Level		-	M - H	М	М	М	М	L - M	L - M	L - M	Н	Н	M - H	Н	М	М	М	М	L - M	L - M

Annex A Water Quality Graphs

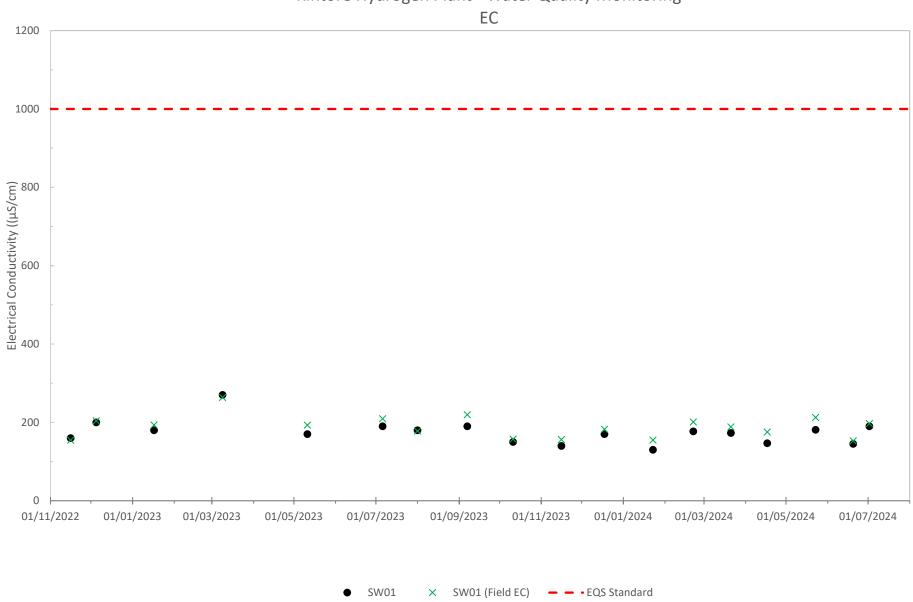
Kintore Hydrogen Facility

Appendix 13.1: Water Quality Monitoring Data

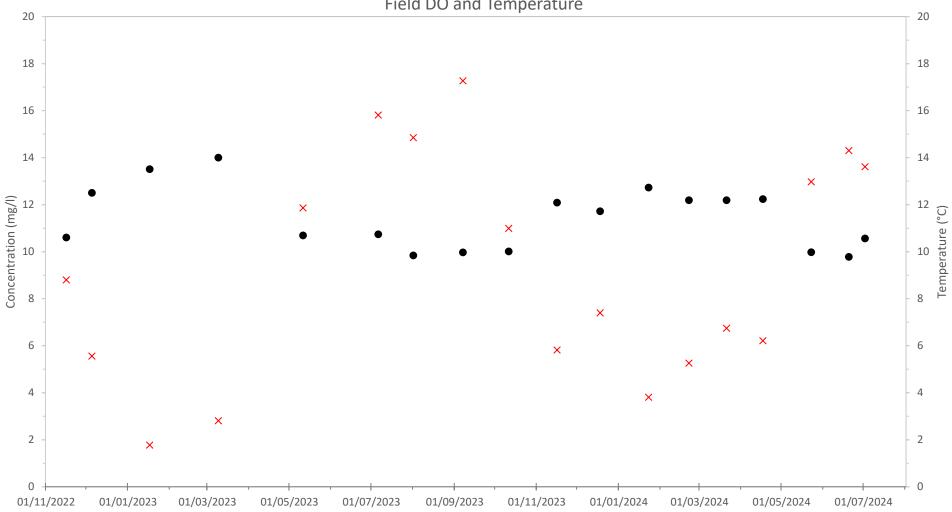

Kintore Hydrogen Ltd


SLR Project No.: 428.013099.00001

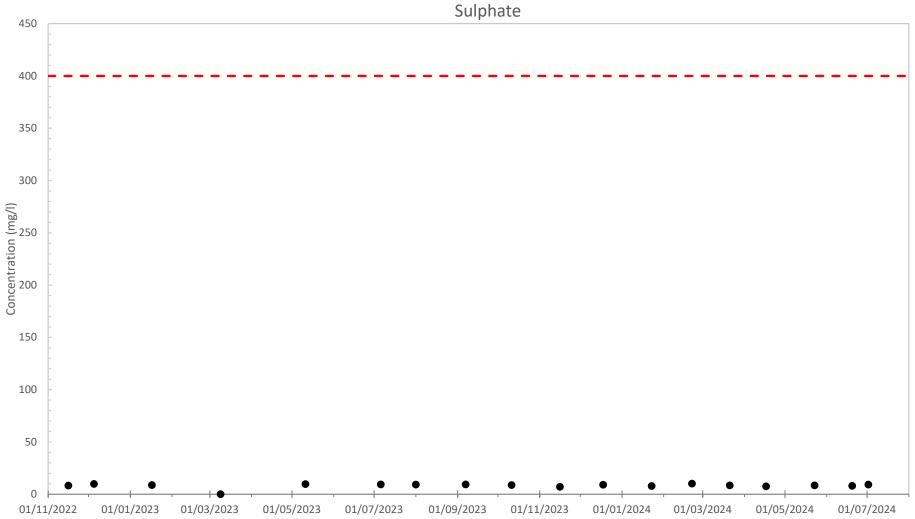
18 July 2024

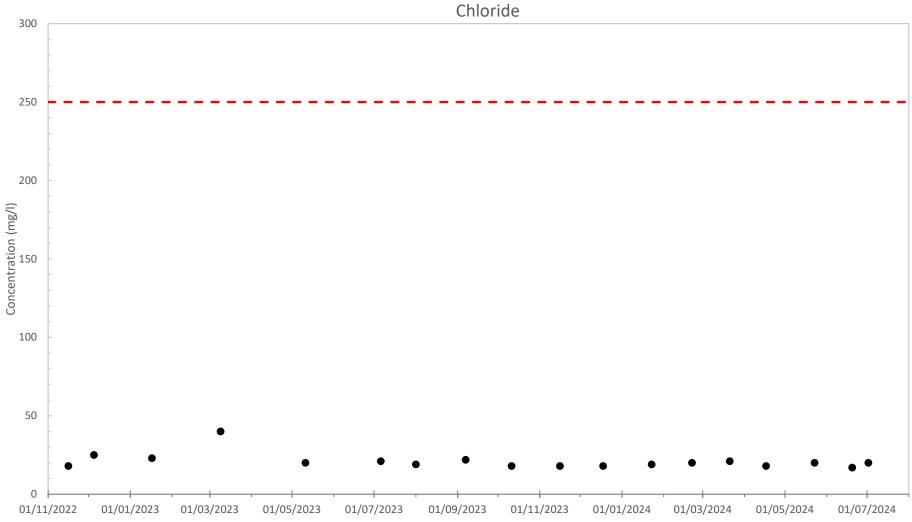


SLR Ref. No.: 428.013099.00001 July 2024

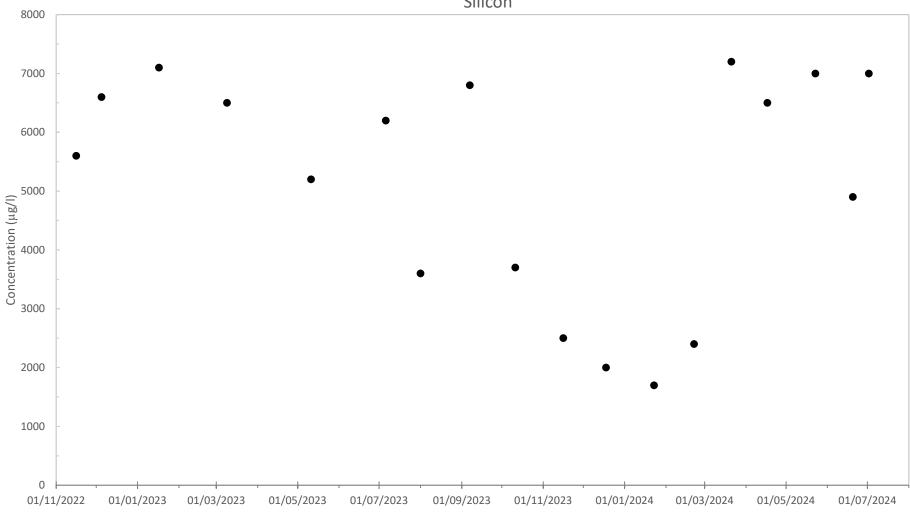


Kintore Hydrogen Plant - Water Quality Monitoring

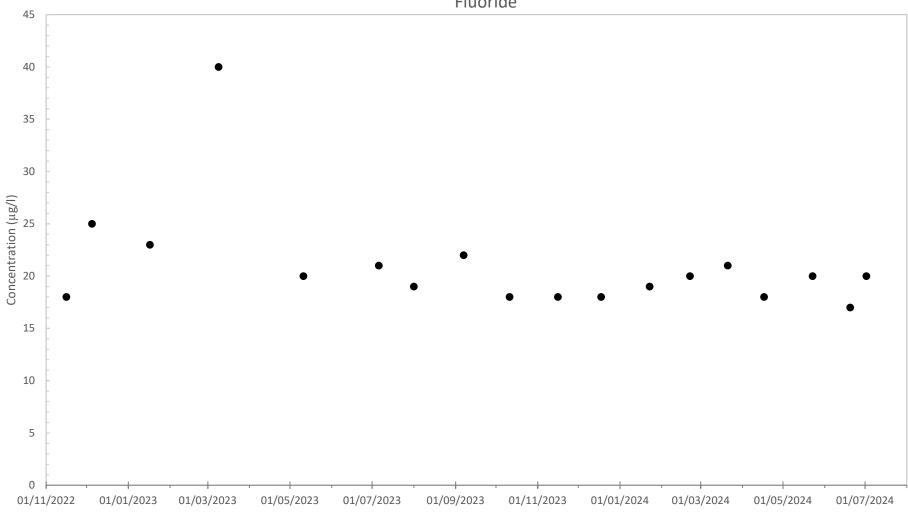



● SW01 (DO) × SW01 (Temp)

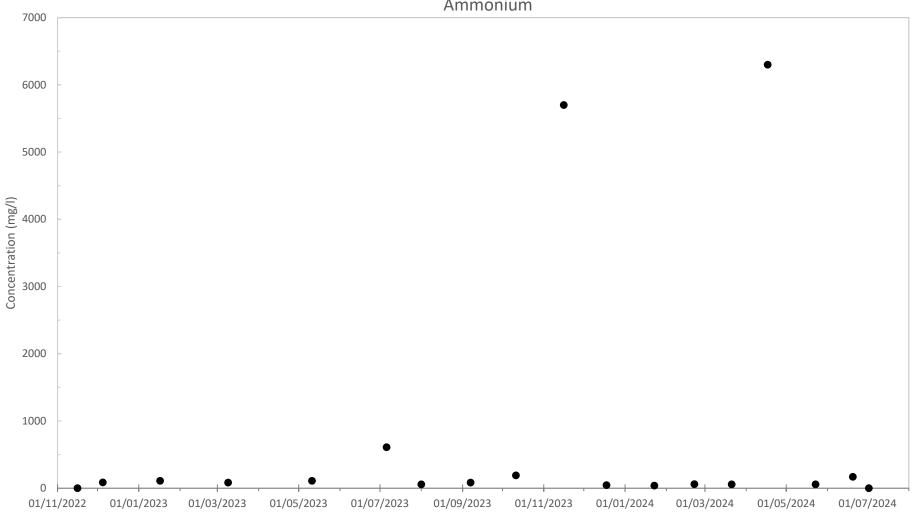
Kintore Hydrogen Plant - Water Quality Monitoring Sulphate

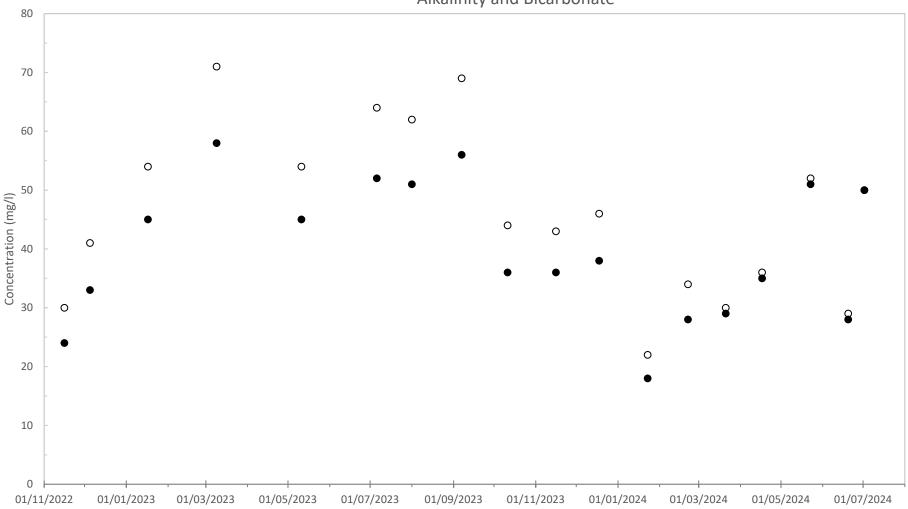

• SW01 - - • Sulphate Regulation Limit

Kintore Hydrogen Plant - Water Quality Monitoring Chloride

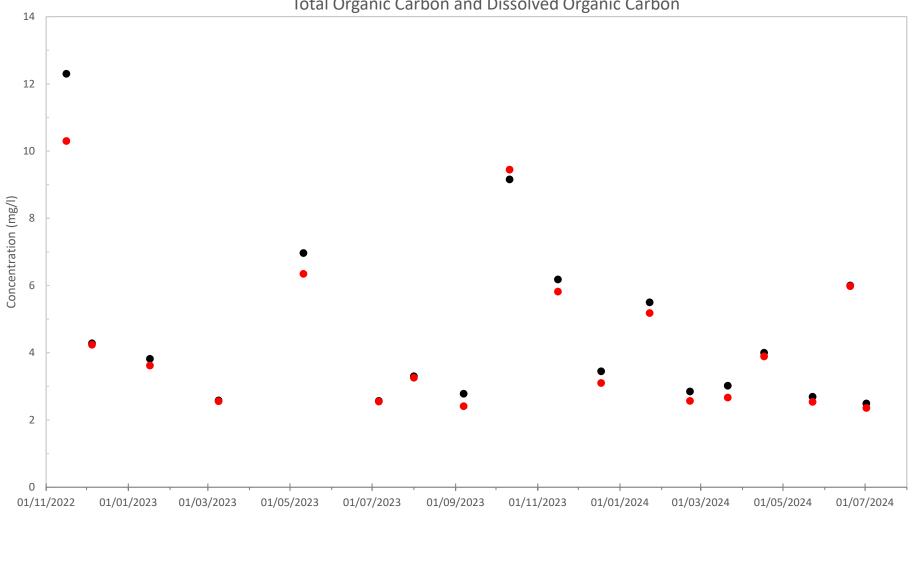


• SW01 - - • Chloride Regulation Limit

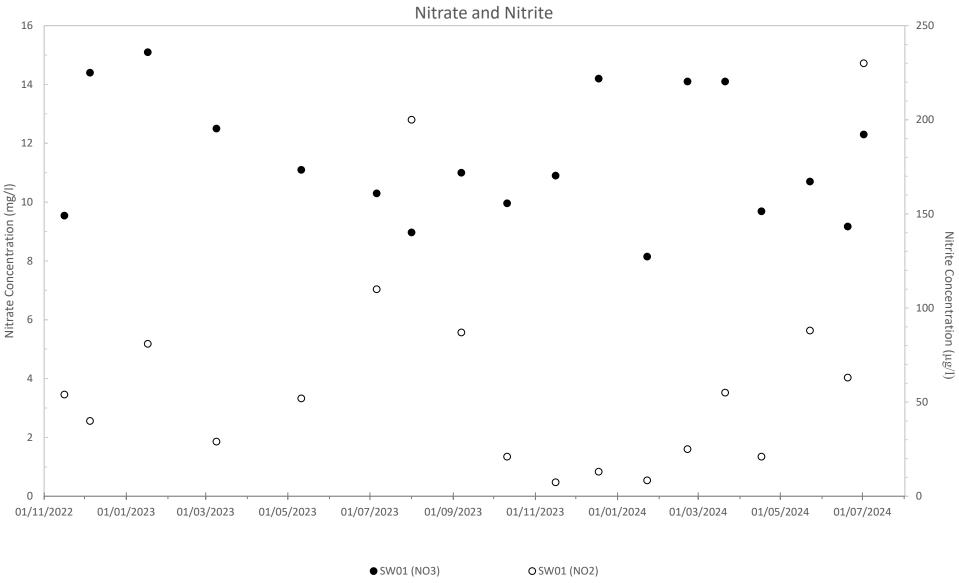

Kintore Hydrogen Plant - Water Quality Monitoring Silicon


Kintore Hydrogen Plant - Water Quality Monitoring Fluoride

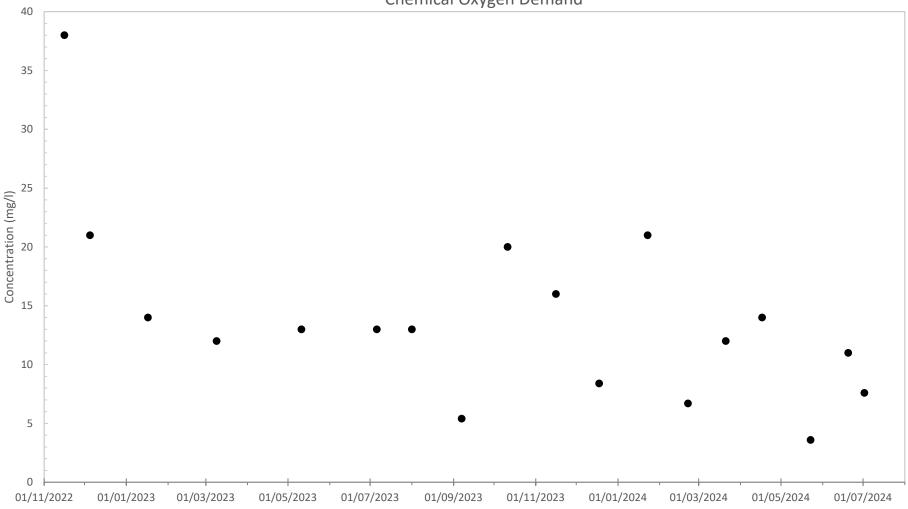
Kintore Hydrogen Plant - Water Quality Monitoring Ammonium

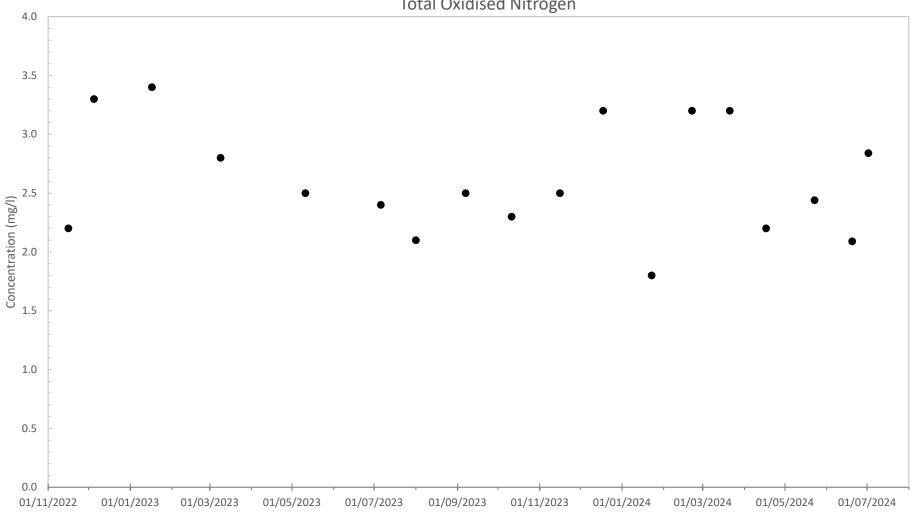


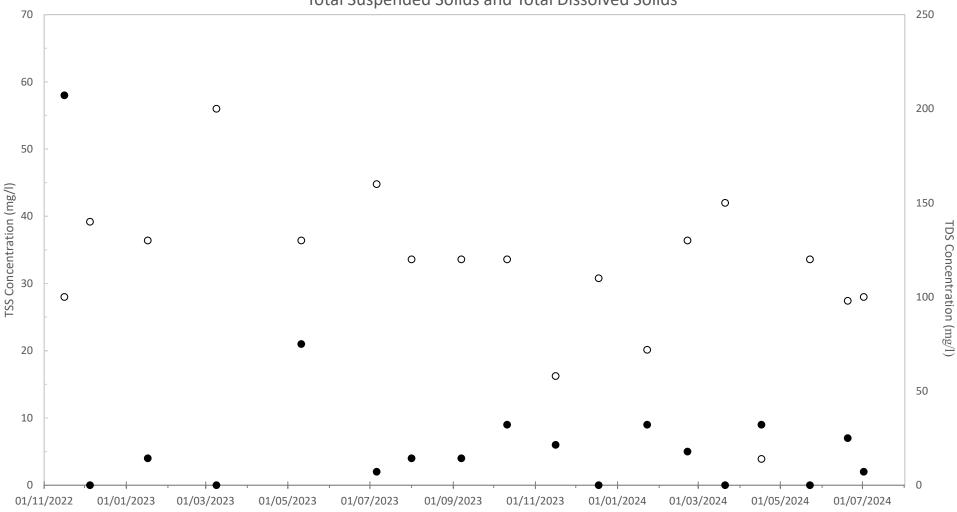
Kintore Hydrogen Plant - Water Quality Monitoring Alkalinity and Bicarbonate



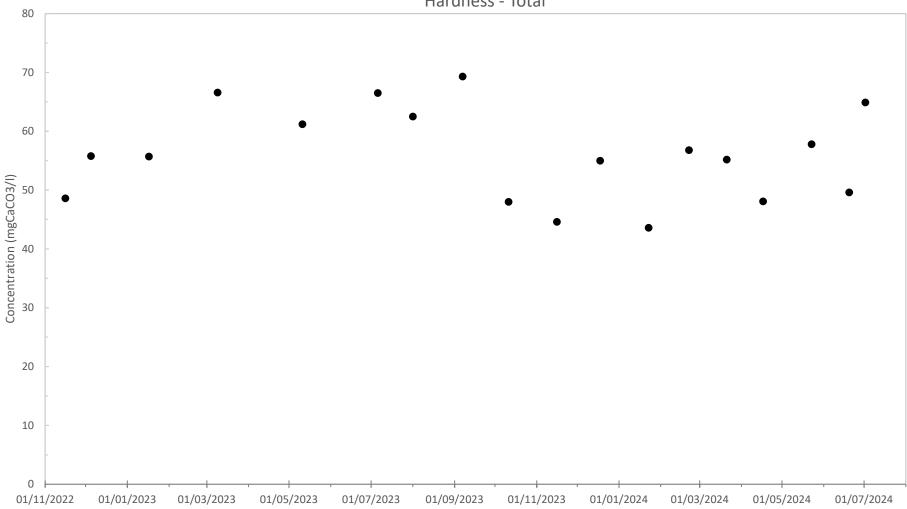
● SW01 (CaCO3) O SW01 (HCO3)


Kintore Hydrogen Plant - Water Quality Monitoring Total Organic Carbon and Dissolved Organic Carbon

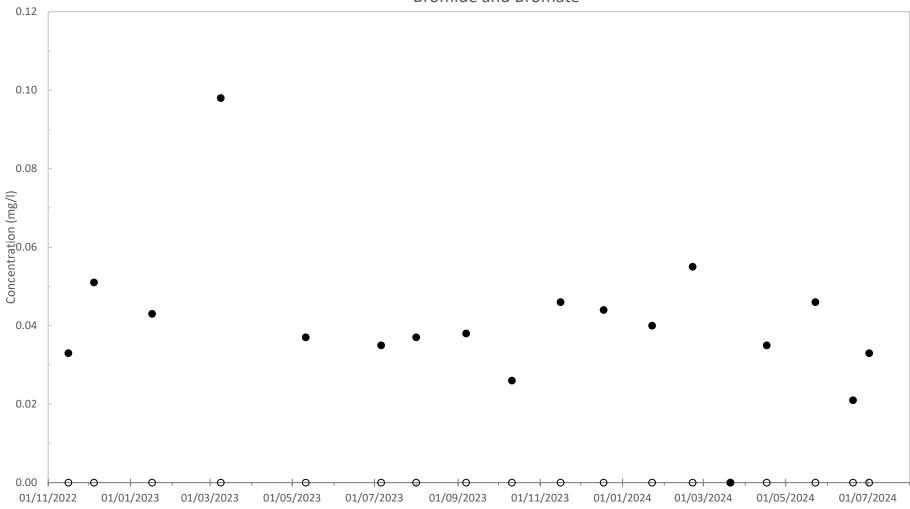



Kintore Hydrogen Plant - Water Quality Monitoring Chemical Oxygen Demand

Kintore Hydrogen Plant - Water Quality Monitoring Total Oxidised Nitrogen

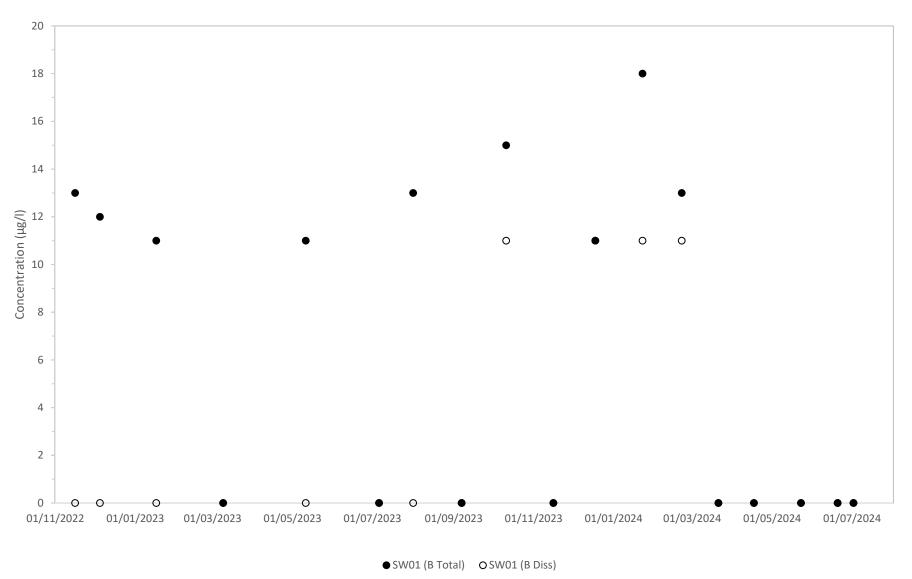


Kintore Hydrogen Plant - Water Quality Monitoring Total Suspended Solids and Total Dissolved Solids

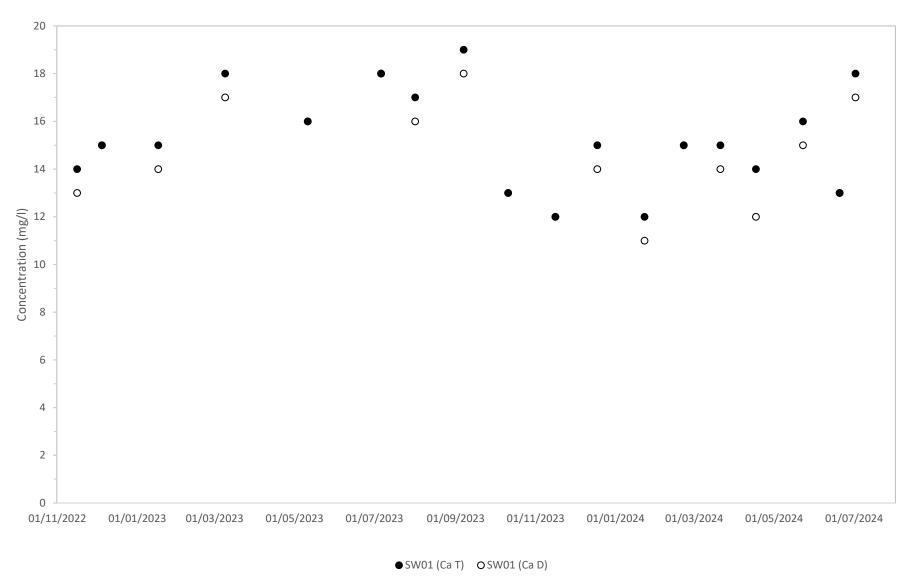


● SW01 (TSS) O SW01 (TDS)

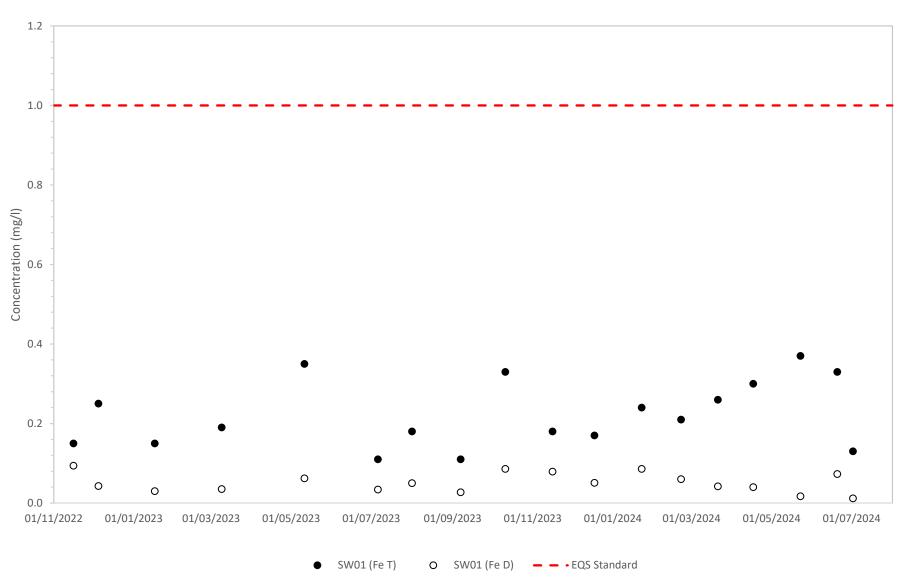
Kintore Hydrogen Plant - Water Quality Monitoring Hardness - Total



Kintore Hydrogen Plant - Water Quality Monitoring Bromide and Bromate

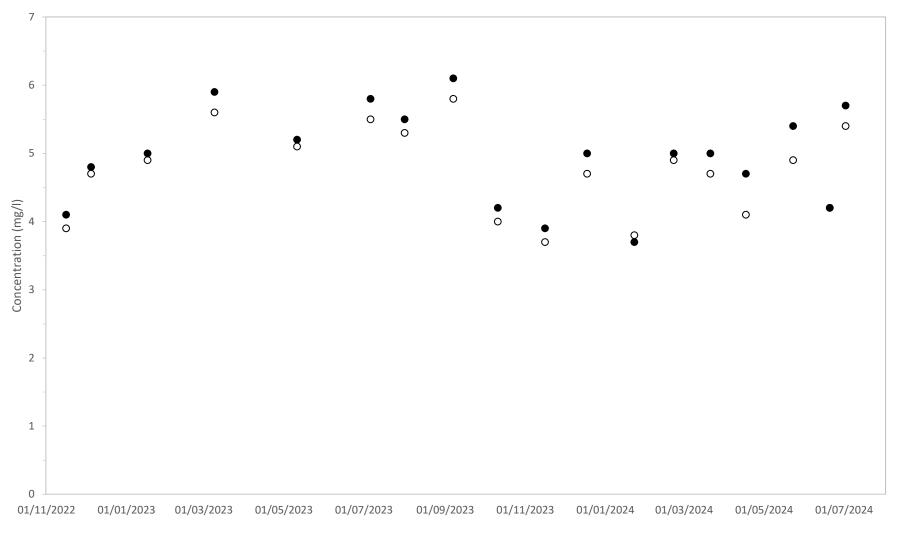

● SW01 (Br-) O SW01 (BrO3-)

Kintore Hydrogen Plant - Water Quality Monitoring Boron (Total and Dissolved)

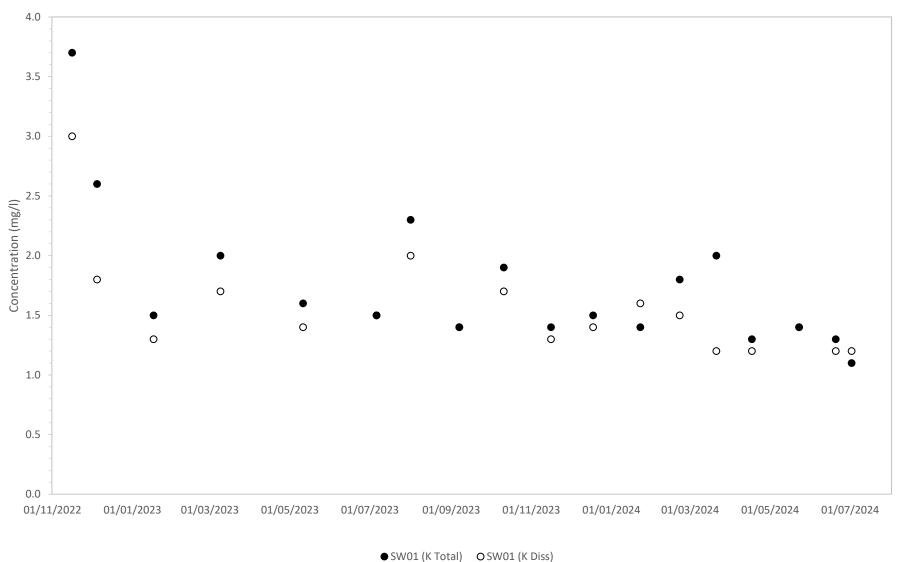


SLR Ref. No.: 428.013099.00001 July 2024

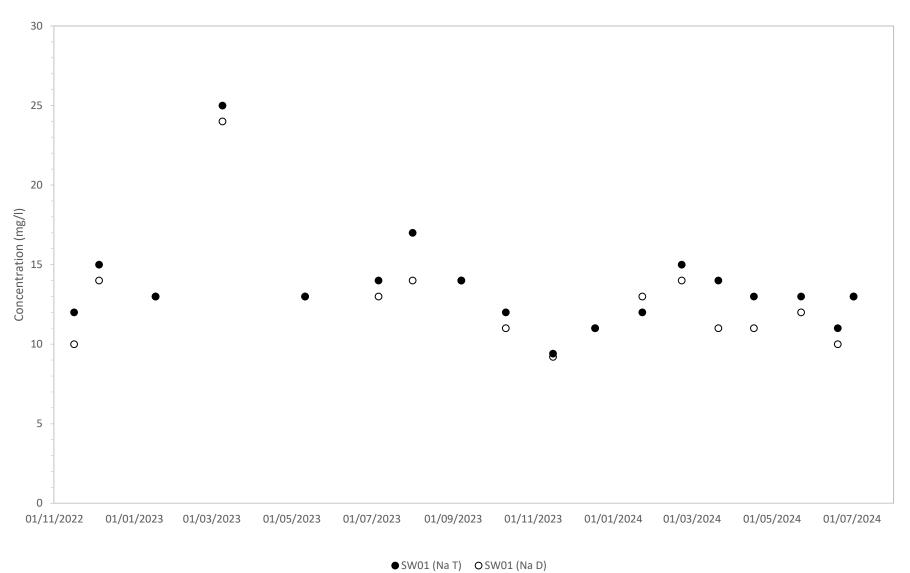
Kintore Hydrogen Plant - Water Quality Monitoring Calcium (Total and Dissolved)



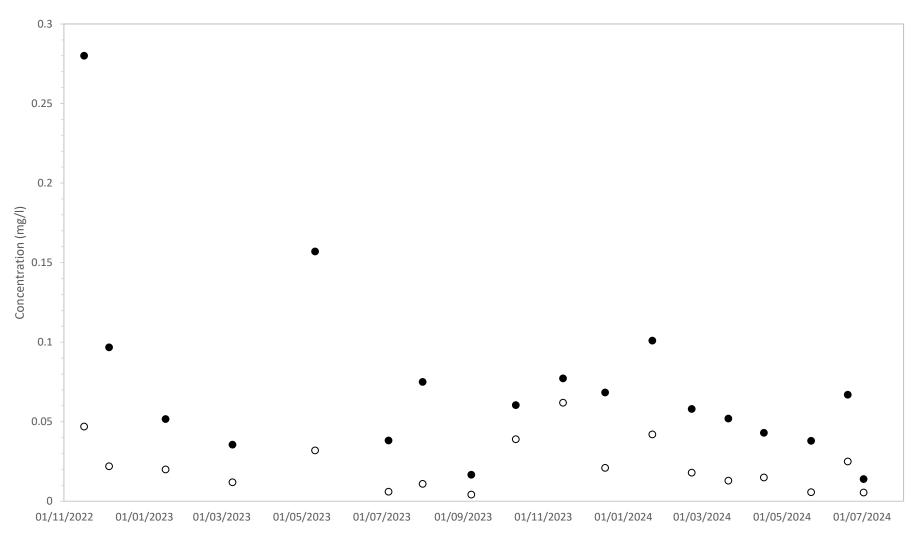
Kintore Hydrogen Plant - Water Quality Monitoring Iron (Total and Dissolved)


SLR Ref. No.: 428.013099.00001 July 2024

Kintore Hydrogen Plant - Water Quality Monitoring Magnesium (Total and Dissolved)

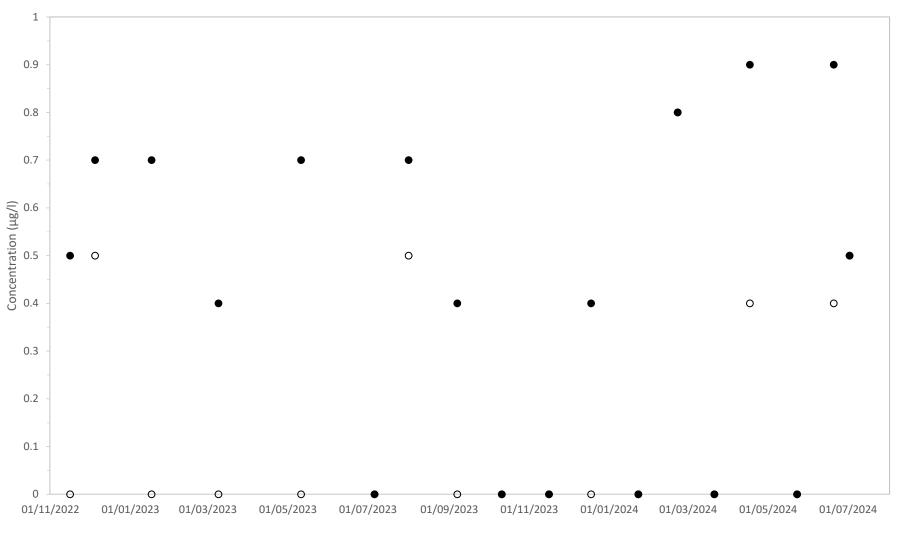

SLR Ref. No.: 428.013099.00001 July 2024

Kintore Hydrogen Plant - Water Quality Monitoring Potassium (Total and Dissolved)

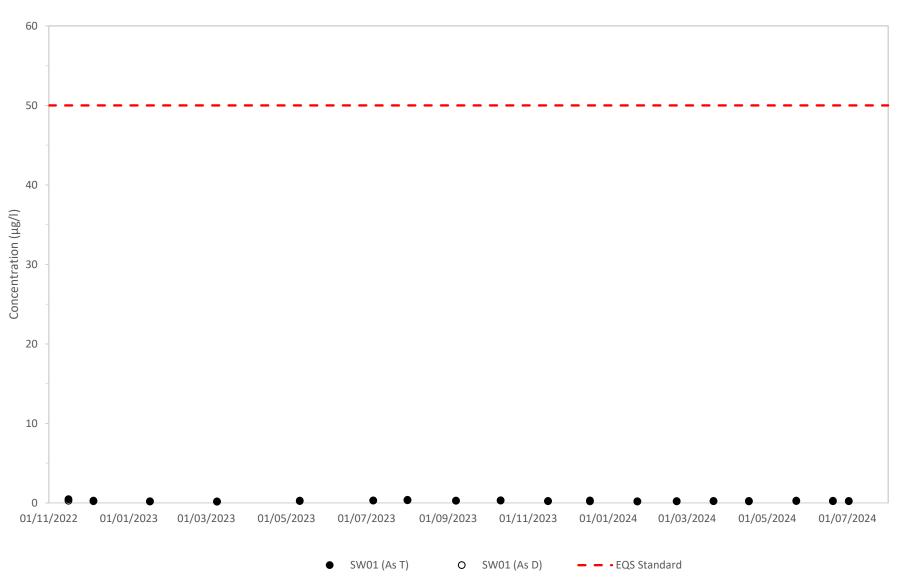


SLR Ref. No.: 428.013099.00001 July 2024

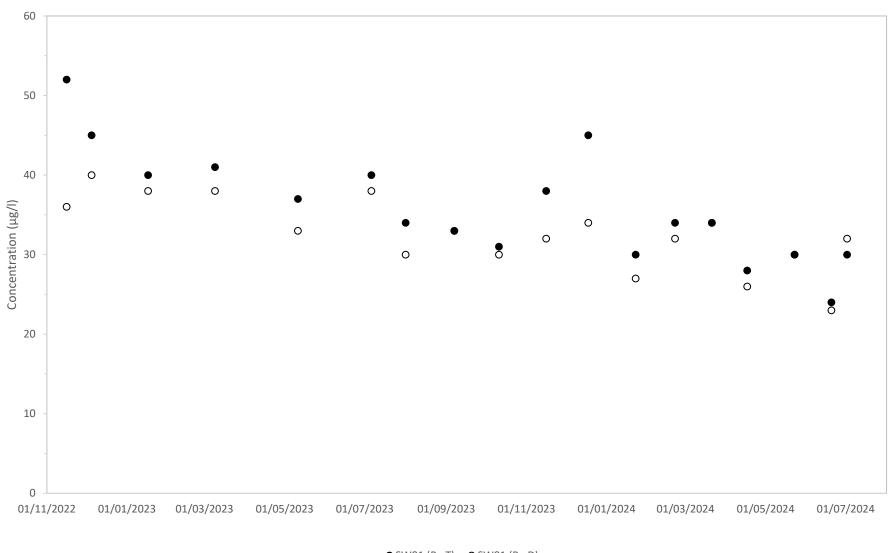
Kintore Hydrogen Plant - Water Quality Monitoring Sodium (Total and Dissolved)



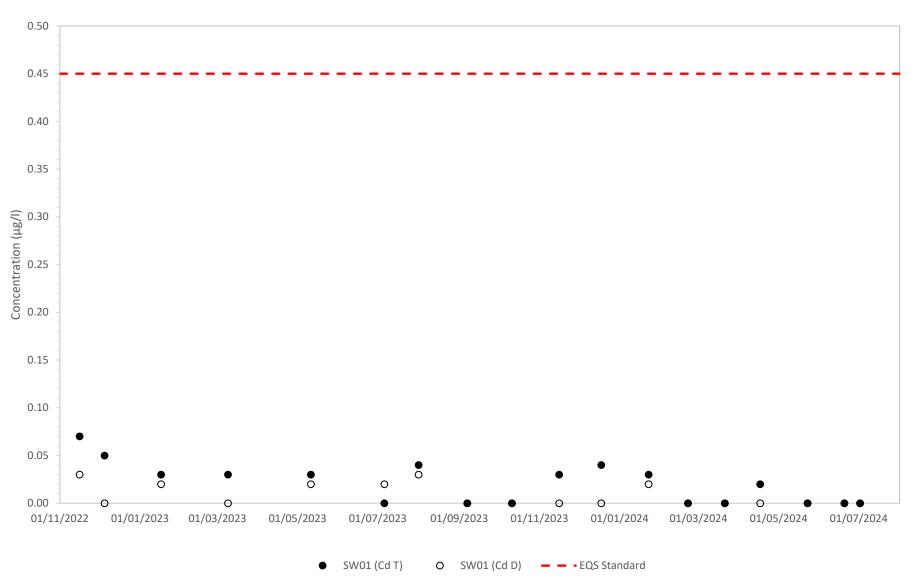
Kintore Hydrogen Plant - Water Quality Monitoring Aluminium (Total and Dissolved)


● SW01 (AIT) OSW01 (AID)

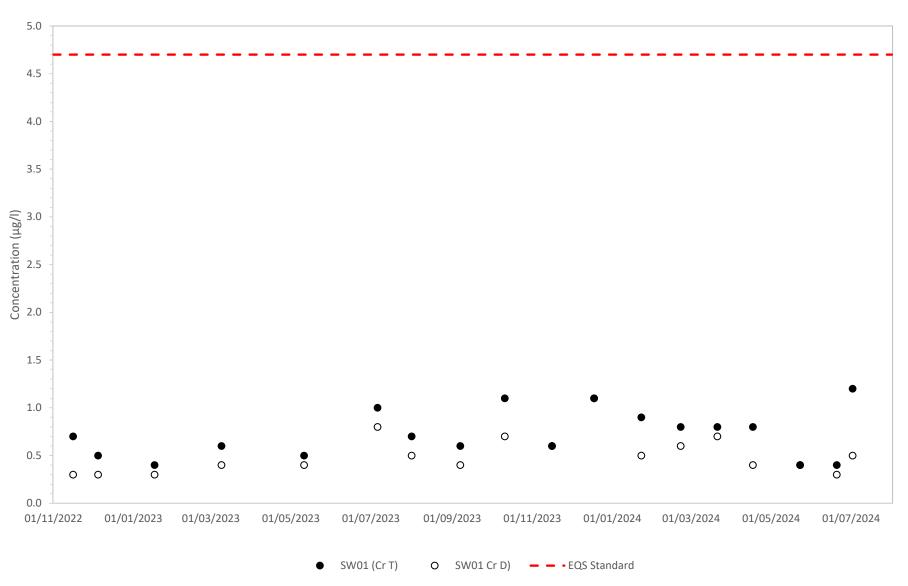
Kintore Hydrogen Plant - Water Quality Monitoring Antimony (Total and Dissolved)

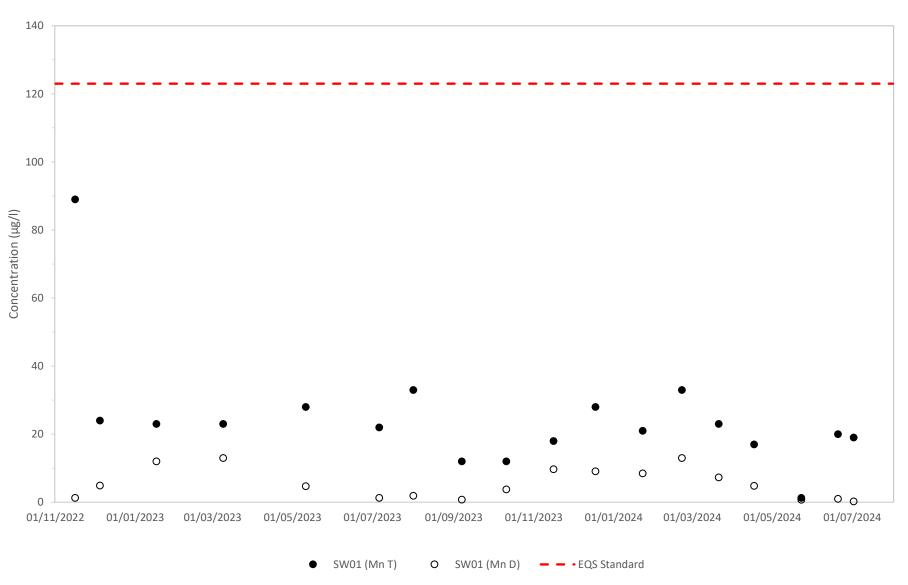

SLR Ref. No.: 428.013099.00001 July 2024

Kintore Hydrogen Plant - Water Quality Monitoring Arsenic (Total and Dissolved)

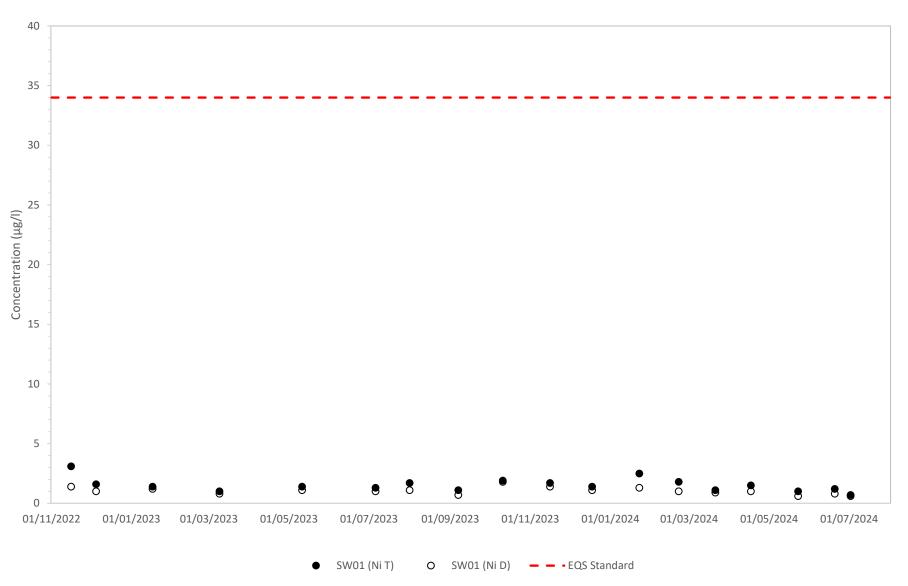


SLR Ref. No.: 428.013099.00001 July 2024

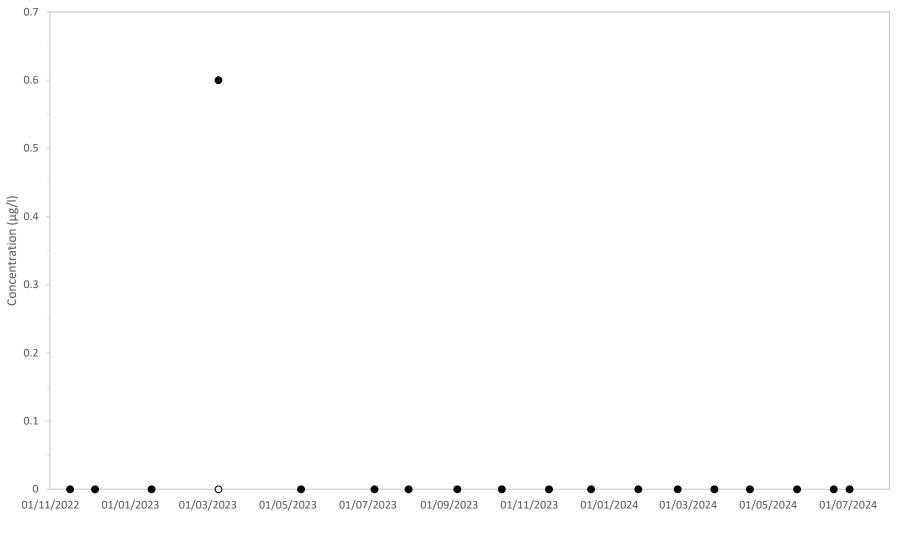

Kintore Hydrogen Plant - Water Quality Monitoring Barium (Total and Dissolved)


Kintore Hydrogen Plant - Water Quality Monitoring Cadmium (Total and Dissolved)

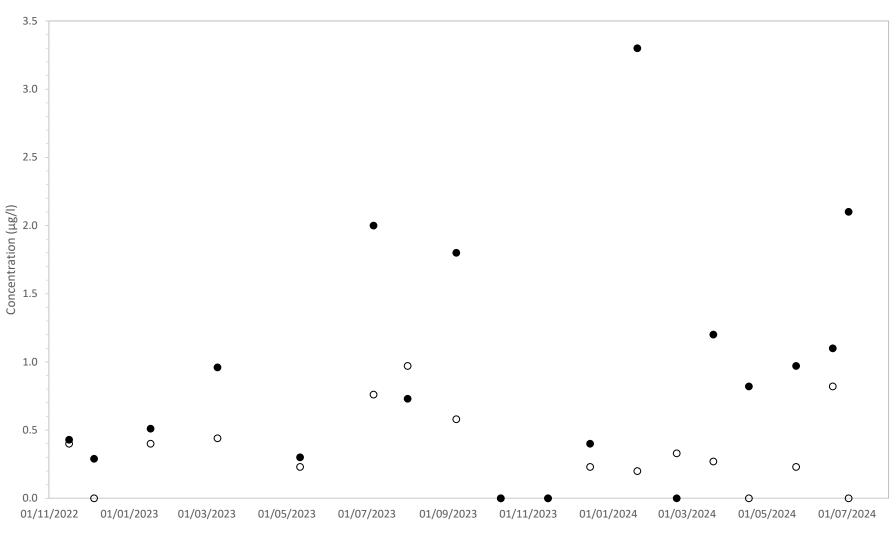
Kintore Hydrogen Plant - Water Quality Monitoring Chromium (Total and Dissolved)



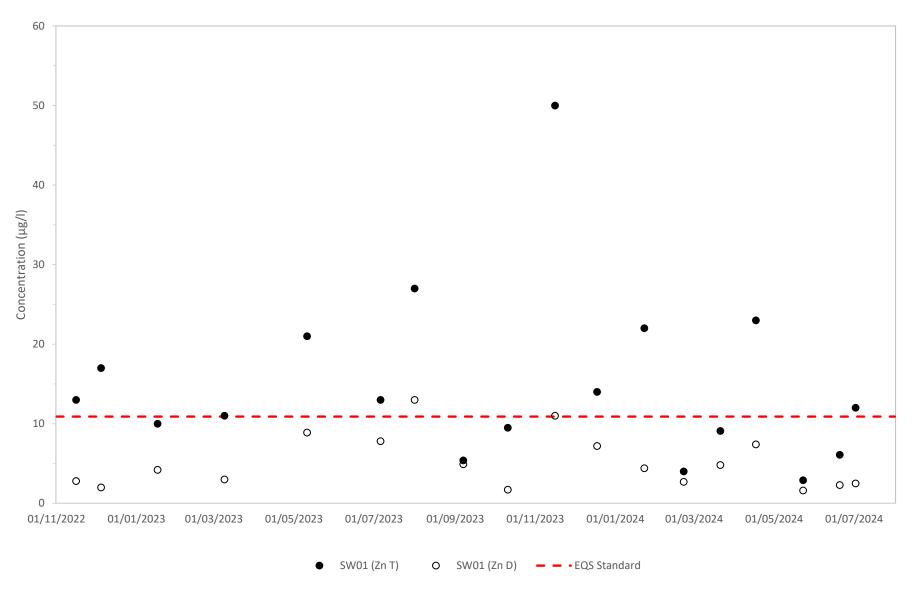
Kintore Hydrogen Plant - Water Quality Monitoring Manganese (Total and Dissolved)



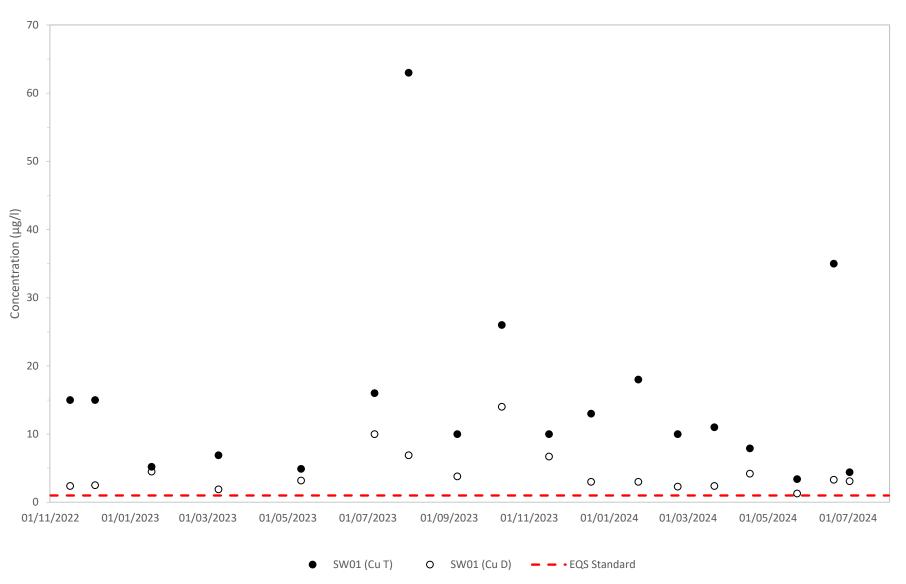
SLR Ref. No.: 428.013099.00001 July 2024


Kintore Hydrogen Plant - Water Quality Monitoring Nickel (Total and Dissolved)

Kintore Hydrogen Plant - Water Quality Monitoring Selenium (Total and Dissolved)



Kintore Hydrogen Plant - Water Quality Monitoring Tin (Total and Dissolved)




● SW01 (Sn T) ○ SW01 (Sn D)

Kintore Hydrogen Plant - Water Quality Monitoring Zinc (Total and Dissolved)

Kintore Hydrogen Plant - Water Quality Monitoring Copper (Total and Dissolved)

Annex B Laboratory Certificates

Kintore Hydrogen Facility

Appendix 13.1: Water Quality Monitoring Data

Kintore Hydrogen Ltd

SLR Project No.: 428.013099.00001

18 July 2024

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH

e: acowe@slrconsulting.com

i2 Analytical Ltd. 40 Carron Pl, East Kilbride, Glasgow G75 0YL

t: 01355202915

f: 01923237404

e: scotland@i2analytical.com

Analytical Report Number: 22-97432

Project / Site name: Kintore-Hydrogen Plant Samples received on: 17/11/2022

Your job number: 428.04707.00035 **Samples instructed on/** 17/11/2022

Analysis started on:

Your order number: 000999-405 Analysis completed by: 24/11/2022

Report Issue Number: 1 **Report issued on:** 24/11/2022

Samples Analysed: 1 water sample

Signed: Askleyt Cumpan.

Ashleigh Cunningham Customer Service Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate

Analytical Report Number: 22-97432 Project / Site name: Kintore-Hydrogen Plant

Your Order No: 000999-405

Lab Sample Number		2503511		
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	16/11/2022			
Time Taken	1350			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH	pH Units	N/A	ISO 17025	7.2
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	160
Turbidity	NTU	1	NONE	17
Sulphate as SO4	mg/l	0.045	ISO 17025	8.36
Chloride	mg/l	0.15	ISO 17025	18
Silicon (total)	μg/l	50	NONE	5600
Fluoride	μg/l	50	ISO 17025	76
Ammonium as NH4	μg/l	15	ISO 17025	< 15
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	10.3
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	12.3
Nitrate as N	mg/l	0.01	ISO 17025	2.16
Nitrate as NO3	mg/l	0.05	ISO 17025	9.54
Nitrite as N	μg/l	1	ISO 17025	17
Nitrite as NO2	μg/l	5	ISO 17025	54
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	24
Alkalinity as CaCO3	mg/l	3	ISO 17025	22
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	38
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.2
Total Suspended Solids	mg/l	2	ISO 17025	58
Total Dissolved Solids (Gravimetric)	mg/l	4	ISO 17025	100

Hardness - Total	mgCaCO 3/I	1	ISO 17025	48.6
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	30
Bromide	mg/l	0.001	ISO 17025	0.033
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	13
Iron (dissolved)	mg/l	0.004	ISO 17025	0.094
Magnesium (dissolved)	mg/l	0.005	ISO 17025	3.9
Potassium (dissolved)	mg/l	0.025	ISO 17025	3
Sodium (dissolved)	mg/l	0.01	ISO 17025	10

Aluminium (total)	mg/l	0.001	ISO 17025	0.28
Antimony (total)	μg/l	0.4	ISO 17025	0.5
Arsenic (total)	μg/l	0.15	ISO 17025	0.48
Barium (total)	μg/l	0.06	ISO 17025	52
Boron (total)	μg/l	10	ISO 17025	13
Cadmium (total)	μg/l	0.02	ISO 17025	0.07
Chromium (total)	μg/l	0.2	ISO 17025	0.7
Iron (total)	mg/l	0.004	ISO 17025	0.15
Manganese (total)	μg/l	0.05	ISO 17025	89
Molybdenum (total)	μg/l	0.05	ISO 17025	0.41
Nickel (total)	μg/l	0.5	ISO 17025	3.1
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	0.43
Zinc (total)	μg/l	0.5	ISO 17025	13

4041

Analytical Report Number: 22-97432 Project / Site name: Kintore-Hydrogen Plant

Your Order No: 000999-405

Lab Sample Number				2503511
Sample Reference				SW01
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				16/11/2022
Time Taken				1350
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Calcium (total)	mg/l	0.012	ISO 17025	14
Magnesium (total)	mg/l	0.005	ISO 17025	4.1
Potassium (total)	mg/l	0.025	ISO 17025	3.7
Sodium (total)	mg/l	0.01	ISO 17025	12
			ISO 17025	
Aluminium (dissolved)	μg/l	1	ISO 17025	47
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.28
Barium (dissolved)	μg/l		ISO 17025	36
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03
Chromium (dissolved)	μg/l μg/l	0.2	ISO 17025	0.3
Copper (dissolved)		0.05	ISO 17025	2.4
Manganese (dissolved)	μg/l μg/l	0.05	ISO 17025	1.3
Molybdenum (dissolved) Nickel (dissolved)	µg/l	0.05	ISO 17025	0.37
• •	µg/l	0.6	ISO 17025	1.4
Selenium (dissolved) Tin (dissolved)	µg/l	0.0	ISO 17025	< 0.6 0.4
Zinc (dissolved)	µg/l	0.5	ISO 17025	
ZIIIC (UISSOIVEU)	P9/1	0.5	130 17 023	2.8
Copper (total)	μg/l	0.5	ISO 17025	15

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

4041

Analytical Report Number : 22-97432 Project / Site name: Kintore-Hydrogen Plant

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-0ES. Accredited matrices: SW PW GW, PrW (Al, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM & USEPA Method 310.2.	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	w	NONE

Analytical Report Number: 22-97432 Project / Site name: Kintore-Hydrogen Plant

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	w	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Alexa Hay

SLR Consulting Ltd Suite 50, Striling Business Centre Wellgreen Stirling FA8 2DZ i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

e: ahay@slrconsulting.com

Your order number:

Analytical Report Number: 22-11802

Project / Site name: Kintore Samples received on: 07/12/2022

Your job number: 428.V04707.00035 **Samples instructed on/** 07/12/2022

Analysis started on:

001541-405 **Analysis completed by:** 14/12/2022

Report Issue Number: 1 **Report issued on:** 14/12/2022

Samples Analysed: 1 water sample

Signed:

Adam Fenwick Technical Reviewer

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-11802 Project / Site name: Kintore

Your Order No: 001541-405

Tour Order No: 001541-405				
Lab Sample Number		2524262		
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	05/12/2022			
Time Taken	1210			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH	pH Units	N/A	ISO 17025	7.8
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	200
Turbidity	NTU	1	NONE	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	9830
Sulphate as SO4	mg/l	0.045	ISO 17025	9.83
Chloride	mg/l	0.15	ISO 17025	25
Silicon (total)	μg/l	50	NONE	6600
Fluoride	μg/l	50	ISO 17025	82
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	86
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	4.24
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	4.28
Nitrate as N	mg/l	0.01	ISO 17025	3.26
Nitrate as NO3	mg/l	0.05	ISO 17025	14.4
Nitrite as N	μg/l	1	ISO 17025	12
Nitrite as NO2	μg/l	5	ISO 17025	40
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	33
Alkalinity as CaCO3	mg/l	3	ISO 17025	22
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	21
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	3.3
Total Suspended Solids	mg/l	2	ISO 17025	< 2.0
Total Dissolved Solids (Gravimetric)	mg/l	4	ISO 17025	140

Hardness - Total	mgCaCO 3/I	1	ISO 17025	55.8
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	41
Bromide	mg/l	0.001	ISO 17025	0.051
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	15
Iron (dissolved)	mg/l	0.004	ISO 17025	0.043
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.7
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.8
Sodium (dissolved)	mg/l	0.01	ISO 17025	14

Aluminium (total)	mg/l	0.001	ISO 17025	0.0968
Antimony (total)	μg/l	0.4	ISO 17025	0.7
Arsenic (total)	μg/l	0.15	ISO 17025	0.29
Barium (total)	μg/l	0.06	ISO 17025	45
Boron (total)	μg/l	10	ISO 17025	12
Cadmium (total)	μg/l	0.02	ISO 17025	0.05
Chromium (total)	μg/l	0.2	ISO 17025	0.5
Iron (total)	mg/l	0.004	ISO 17025	0.25
Manganese (total)	μg/l	0.05	ISO 17025	24
Molybdenum (total)	μg/l	0.05	ISO 17025	0.49
Nickel (total)	μg/l	0.5	ISO 17025	1.6
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	0.29
Zinc (total)	μg/l	0.5	ISO 17025	17

Analytical Report Number: 22-11802 Project / Site name: Kintore

Your Order No: 001541-405

Limit of detection 0.012 0.005 0.025 0.01 1 0.4 0.15 0.06	Section 150 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	SW01 None Supplied None Supplied 05/12/2022 1210 15 4.8 2.6 15
0.012 0.005 0.025 0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	None Supplied 05/12/2022 1210 15 4.8 2.6 15 22
0.012 0.005 0.025 0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	05/12/2022 1210 15 4.8 2.6 15
0.012 0.005 0.025 0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	15 4.8 2.6 15
0.012 0.005 0.025 0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	15 4.8 2.6 15
0.012 0.005 0.025 0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	4.8 2.6 15
0.005 0.025 0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	4.8 2.6 15
0.025 0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025 ISO 17025	2.6 15
0.01 1 0.4 0.15	ISO 17025 ISO 17025 ISO 17025	15
1 0.4 0.15	ISO 17025 ISO 17025	22
0.4 0.15	ISO 17025	
0.4 0.15	ISO 17025	
0.15		
	100 17 020	0.22
	ISO 17025	40
0.02	ISO 17025	< 0.02
0.2	ISO 17025	0.3
0.5	ISO 17025	2.5
0.05	ISO 17025	4.9
0.05	ISO 17025	0.37
0.5	ISO 17025	1
0.6	ISO 17025	< 0.6
0.2	ISO 17025	< 0.20
0.5	ISO 17025	2
	0.5 0.6 0.2	0.5 ISO 17025 0.6 ISO 17025 0.2 ISO 17025

Analytical Report Number : 22-11802 Project / Site name: Kintore

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (AI, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM & USEPA Method 310.2.	L025-PL	w	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Analytical Report Number: 22-11802

Project / Site name: Kintore

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	w	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	w	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. 40 Carron Pl, East Kilbride, Glasgow G75 0YL

t: 01355202915

f: 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 23-12925

Project / Site name: Kintore- Hydrogen Plant Samples received on: 19/01/2023

Your job number: 428.012991.00001 **Samples instructed on/** 19/01/2023

Analysis started on:

Your order number: 002140-405 Analysis completed by: 27/01/2023

Report Issue Number: 1 **Report issued on:** 27/01/2023

Samples Analysed: 1 water sample

Signed: Askleyt Cumpram.

Ashleigh Cunningham Customer Service Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate

Analytical Report Number: 23-12925 Project / Site name: Kintore- Hydrogen Plant

Your Order No: 002140-405

Lab Sample Number	ab Sample Number					
Sample Reference	SW01					
Sample Number	None Supplied					
Depth (m)	None Supplied					
Date Sampled	17/01/2023					
Time Taken	1315					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			

General Inorganics

	_		_	
pH (L005B)	pH Units	N/A	ISO 17025	7.6
Electrical Conductivity at 20 °C (L031B)	μS/cm	10	ISO 17025	180
Turbidity	NTU	1	NONE	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	8820
Sulphate as SO4	mg/l	0.045	ISO 17025	8.82
Chloride	mg/l	0.15	ISO 17025	23
Silicon (total)	μg/l	50	NONE	7100
Fluoride	μg/l	50	ISO 17025	55
Ammonium as NH4	μg/l	15	ISO 17025	110
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	3.62
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	3.82
Nitrate as N	mg/l	0.01	ISO 17025	3.4
Nitrate as NO3	mg/l	0.05	ISO 17025	15.1
Nitrite as N	μg/l	1	ISO 17025	25
Nitrite as NO2	μg/l	5	ISO 17025	81
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	45
Alkalinity as CaCO3	mg/l	3	ISO 17025	35
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	14
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	3.4
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	4
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	130

Hardness - Total	mgCaCO 3/I	1	ISO 17025	55.7
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	54
Bromide	mg/l	0.001	ISO 17025	0.043
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	14
Iron (dissolved)	mg/l	0.004	ISO 17025	0.03
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.9
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.3
Sodium (dissolved)	mg/l	0.01	ISO 17025	13

Aluminium (total)	mg/l	0.001	ISO 17025	0.0517
Antimony (total)	μg/l	0.4	ISO 17025	0.7
Arsenic (total)	μg/l	0.15	ISO 17025	0.21
Barium (total)	μg/l	0.06	ISO 17025	40
Boron (total)	μg/l	10	ISO 17025	11
Cadmium (total)	μg/l	0.02	ISO 17025	0.03
Chromium (total)	μg/l	0.2	ISO 17025	0.4
Iron (total)	mg/l	0.004	ISO 17025	0.15
Manganese (total)	μg/l	0.05	ISO 17025	23
Molybdenum (total)	μg/l	0.05	ISO 17025	0.39
Nickel (total)	μg/l	0.5	ISO 17025	1.4
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	0.51
Zinc (total)	μg/l	0.5	ISO 17025	10

Analytical Report Number: 23-12925 Project / Site name: Kintore- Hydrogen Plant

Your Order No: 002140-405

Lab Sample Number	.ab Sample Number						
Sample Reference				SW01			
Sample Number				None Supplied			
Depth (m)				None Supplied			
Date Sampled				17/01/2023			
Time Taken				1315			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Calcium (total)	mg/l	0.012	ISO 17025	15			
Magnesium (total)	mg/l	0.005	ISO 17025	5			
Potassium (total)	mg/l	0.025	ISO 17025	1.5			
Sodium (total)	mg/l	0.01	ISO 17025	13			
Aluminium (dissolved)	μg/l	1	ISO 17025	20			
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4			
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.18			
Barium (dissolved)	μg/l	0.06	ISO 17025	38			
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02			
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.3			
Copper (dissolved)	μg/l	0.5	ISO 17025	4.5			
Manganese (dissolved)	μg/l	0.05	ISO 17025	12			
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.33			
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.2			
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6			
Tin (dissolved)	μg/l	0.2	ISO 17025	0.4			
Zinc (dissolved)	μg/l	0.5	ISO 17025	4.2			
Copper (total)	μg/l	0.5	ISO 17025	5.2			

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \qquad \mbox{I/S} = \mbox{ Insufficient Sample} \qquad \mbox{ND} = \mbox{ Not Detected}$

Analytical Report Number : 23-12925 Project / Site name: Kintore- Hydrogen Plant

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (AI, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL		ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM & USEPA Method 310.2.	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Analytical Report Number : 23-12925 Project / Site name: Kintore- Hydrogen Plant

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	w	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH

i2 Analytical Ltd. 40 Carron PI, East Kilbride, Glasgow G75 0YL

t: 01355202915

f: 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 23-22267

Project / Site name: Kintore - Hydrogen Plant Samples received on: 10/03/2023

Your job number: 428.012991.00001 Samples instructed on/ 10/03/2023

Analysis started on:

002957-405 Your order number: Analysis completed by: 20/03/2023

21/03/2023 **Report Issue Number:** 1 Report issued on:

Samples Analysed: 1 water sample

Signed:

Alyssa Brown Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate

Analytical Report Number: 23-22267 Project / Site name: Kintore - Hydrogen Plant

Your Order No: 002957-405

Lab Sample Number		2612431		
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled	09/03/2023			
Time Taken	1445			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH (L005B)	pH Units	N/A	ISO 17025	7.4
Electrical Conductivity at 20 °C (L031B)	μS/cm	10	ISO 17025	270
Turbidity	NTU	1	NONE	1.4
Sulphate as SO4	mg/l	0.045	ISO 17025	11
Chloride	mg/l	0.15	ISO 17025	40
Silicon (total)	μg/l	50	NONE	6500
Fluoride	μg/l	50	ISO 17025	68
Ammonium as NH4	μg/l	15	ISO 17025	84
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.56
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.58
Nitrate as N	mg/l	0.01	ISO 17025	2.83
Nitrate as NO3	mg/l	0.05	ISO 17025	12.5
Nitrite as N	μg/l	1	ISO 17025	8.8
Nitrite as NO2	μg/l	5	ISO 17025	29
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	58
Alkalinity as CaCO3	mg/l	3	ISO 17025	42
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	12
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.8
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	< 2.0
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	200

Hardness - Total	mgCaCO 3/I	1	ISO 17025	66.6
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	71
Bromide	mg/l	0.001	ISO 17025	0.098
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	17
Iron (dissolved)	mg/l	0.004	ISO 17025	0.035
Magnesium (dissolved)	mg/l	0.005	ISO 17025	5.6
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.7
Sodium (dissolved)	mg/l	0.01	ISO 17025	24

Aluminium (total)	mg/l	0.001	ISO 17025	0.0356
Antimony (total)	μg/l	0.4	ISO 17025	0.4
Arsenic (total)	μg/l	0.15	ISO 17025	0.2
Barium (total)	μg/l	0.06	ISO 17025	41
Boron (total)	μg/l	10	ISO 17025	< 10
Cadmium (total)	μg/l	0.02	ISO 17025	0.03
Chromium (total)	μg/l	0.2	ISO 17025	0.6
Iron (total)	mg/l	0.004	ISO 17025	0.19
Manganese (total)	μg/l	0.05	ISO 17025	23
Molybdenum (total)	μg/l	0.05	ISO 17025	0.92
Nickel (total)	μg/l	0.5	ISO 17025	1
Selenium (total)	μg/l	0.6	ISO 17025	0.6
Tin (total)	μg/l	0.2	ISO 17025	0.96
Zinc (total)	μg/l	0.5	ISO 17025	11

4041

Analytical Report Number: 23-22267 Project / Site name: Kintore - Hydrogen Plant

Your Order No: 002957-405

Lab Sample Number				2612431
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)	None Supplied			
Date Sampled	09/03/2023			
Time Taken	1445			
Analytical Parameter (Water Analysis)				
Calcium (total)	mg/l	0.012	ISO 17025	18
Magnesium (total)	mg/l	0.005	ISO 17025	5.9
Potassium (total)	mg/l	0.025	ISO 17025	2
Sodium (total)	mg/l	0.01	ISO 17025	25
			· 1	
Aluminium (dissolved)	μg/l	1	ISO 17025	12
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.16
Barium (dissolved)	μg/l	0.06	ISO 17025	38
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.4
Copper (dissolved)	μg/l	0.5	ISO 17025	1.9
Manganese (dissolved)	μg/l	0.05	ISO 17025	13
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.31
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.8
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	0.44
Zinc (dissolved)	μg/l	0.5	ISO 17025	3
Copper (total)	μg/l	0.5	ISO 17025	6.9

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \qquad \mbox{I/S} = \mbox{ Insufficient Sample} \qquad \mbox{ND} = \mbox{ Not Detected}$

Analytical Report Number: 23-22267 Project / Site name: Kintore - Hydrogen Plant

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	allytical Test Name Analytical Method Description Analytical Method Reference			Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (AI, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM & USEPA Method 310.2.	L025-PL	w	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Analytical Report Number : 23-22267 Project / Site name: Kintore - Hydrogen Plant

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference		Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	w	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 23-22267 Project / Site name: Kintore - Hydrogen Plant

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

key. a - No sampling date b - incorrect container c - Holding time d - Headspace e - Temperature							
Sample ID	Other ID			Sample Deviation	Test Name	Test Ref	Test Deviation
SW01	None Supplied	W	2612431	С	Electrical conductivity at 20oC of water	L031-PL	С
SW01	None Supplied	W	2612431	С	Turbidity of in water	L083-PL	с
SW01	None Supplied	W	2612431	С	pH at 20oC in water (automated)	L099-PL	С

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. 40 Carron Pl, East Kilbride, Glasgow G75 0YL

t: 01355202915

f: 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 23-33670

Project / Site name: Kintore-Hydrogen Plant Samples received on: 15/05/2023

Your job number: 428.012991.00001 **Samples instructed on/** 15/05/2023

Analysis started on:

Your order number: 003895-405 Analysis completed by: 23/05/2023

Report Issue Number: 1 **Report issued on:** 23/05/2023

Samples Analysed: 1 water sample

Signed:

Alyssa Brown Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate

4043

Analytical Report Number: 23-33670 Project / Site name: Kintore-Hydrogen Plant

Lab Sample Number	2678453					
Sample Reference						
Sample Number				None Supplied		
Depth (m)				None Supplied		
Date Sampled	11/05/2023					
Time Taken				1330		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			

General Inorganics

pH (L005B)	pH Units	N/A	ISO 17025	7.8
Electrical Conductivity at 20 °C (L031B)	μS/cm	10	ISO 17025	170
Turbidity	NTU	1	NONE	2.1
Sulphate as SO4	μg/l	45	ISO 17025	9630
Sulphate as SO4	mg/l	0.045	ISO 17025	9.63
Chloride	mg/l	0.15	ISO 17025	20
Silicon (total)	μg/l	50	NONE	5200
Fluoride	μg/l	50	ISO 17025	60
Ammonium as NH4	μg/l	15	ISO 17025	110
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	6.35
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	6.97
Nitrate as N	mg/l	0.01	ISO 17025	2.51
Nitrate as NO3	mg/l	0.05	ISO 17025	11.1
Nitrite as N	μg/l	1	ISO 17025	16
Nitrite as NO2	μg/l	5	ISO 17025	52
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	45
Alkalinity as CaCO3	mg/l	3	ISO 17025	35
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	13
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.5
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	21
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	130

Hardness - Total	mgCaCO 3/I	1	ISO 17025	61.2
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	54
Bromide	mg/l	0.001	ISO 17025	0.037
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	16
Iron (dissolved)	mg/l	0.004	ISO 17025	0.062
Magnesium (dissolved)	mg/l	0.005	ISO 17025	5.1
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.4
Sodium (dissolved)	mg/l	0.01	ISO 17025	13

Aluminium (total)	mg/l	0.001	ISO 17025	0.157
Antimony (total)	μg/l	0.4	ISO 17025	0.7
Arsenic (total)	μg/l	0.15	ISO 17025	0.3
Barium (total)	μg/l	0.06	ISO 17025	37
Boron (total)	μg/l	10	ISO 17025	11
Cadmium (total)	μg/l	0.02	ISO 17025	0.03
Chromium (total)	μg/l	0.2	ISO 17025	0.5
Iron (total)	mg/l	0.004	ISO 17025	0.35
Manganese (total)	μg/l	0.05	ISO 17025	28
Molybdenum (total)	μg/l	0.05	ISO 17025	0.26
Nickel (total)	μg/l	0.5	ISO 17025	1.4
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	0.3
Zinc (total)	μg/l	0.5	ISO 17025	21

Calcium (total)	mg/l	0.012	ISO 17025	16
Magnesium (total)	mg/l	0.005	ISO 17025	5.2
Potassium (total)	mg/l	0.025	ISO 17025	1.6

Analytical Report Number: 23-33670 Project / Site name: Kintore-Hydrogen Plant

Lab Sample Number				2678453			
Sample Reference							
Sample Number							
Depth (m) Date Sampled							
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Sodium (total)	mg/l	0.01	ISO 17025	13			
Aluminium (dissolved)	μg/l	1	ISO 17025	32			
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4			
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.24			
Barium (dissolved)	μg/l	0.06	ISO 17025	33			
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02			
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.4			
Copper (dissolved)	μg/l	0.5	ISO 17025	3.2			
Manganese (dissolved)	μg/l	0.05	ISO 17025	4.7			
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.25			
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.1			
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6			
Tin (dissolved)	μg/l	0.2	ISO 17025	0.23			
(=:===)	μg/l	0.5	ISO 17025	8.9			

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \hspace{0.5cm} \mbox{Insufficient Sample} \hspace{0.5cm} \mbox{ND} = \hspace{0.5cm} \mbox{Not Detected}$

Analytical Report Number: 23-33670 Project / Site name: Kintore-Hydrogen Plant

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (AI, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM & USEPA Method 310.2.	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Analytical Report Number : 23-33670 Project / Site name: Kintore-Hydrogen Plant

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined cravimetrically using the moisture content which is carried out at a maximum of 30oC

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Analytical Report Number: 23-33670 Project / Site name: Kintore-Hydrogen Plant

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
SW01	None Supplied	W	2678453	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW01	None Supplied	W	2678453	С	Ammonium as NH4 in water	L082-PL	С
SW01	None Supplied	W	2678453	С	Electrical conductivity at 20oC of water	L031-PL	С
SW01	None Supplied	W	2678453	С	Turbidity of in water	L083-PL	С
SW01	None Supplied	W	2678453	С	pH at 20oC in water (automated)	L099-PL	С

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. 40 Carron Pl, East Kilbride, Glasgow G75 0YL

t: 01355202915

f: 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 23-33670

Project / Site name: Kintore-Hydrogen Plant Samples received on: 15/05/2023

Your job number: 428.012991.00001 **Samples instructed on/** 15/05/2023

Analysis started on:

Your order number: 003895-405 Analysis completed by: 23/05/2023

Report Issue Number: 1 **Report issued on:** 23/05/2023

Samples Analysed: 1 water sample

Signed:

Alyssa Brown Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate

4043

Analytical Report Number: 23-33670 Project / Site name: Kintore-Hydrogen Plant

Lab Sample Number	2678453				
Sample Reference	SW01				
Sample Number	None Supplied				
Depth (m)	None Supplied				
Date Sampled	11/05/2023				
Time Taken					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		

General Inorganics

pH (L005B)	pH Units	N/A	ISO 17025	7.8
Electrical Conductivity at 20 °C (L031B)	μS/cm	10	ISO 17025	170
Turbidity	NTU	1	NONE	2.1
Sulphate as SO4	μg/l	45	ISO 17025	9630
Sulphate as SO4	mg/l	0.045	ISO 17025	9.63
Chloride	mg/l	0.15	ISO 17025	20
Silicon (total)	μg/l	50	NONE	5200
Fluoride	μg/l	50	ISO 17025	60
Ammonium as NH4	μg/l	15	ISO 17025	110
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	6.35
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	6.97
Nitrate as N	mg/l	0.01	ISO 17025	2.51
Nitrate as NO3	mg/l	0.05	ISO 17025	11.1
Nitrite as N	μg/l	1	ISO 17025	16
Nitrite as NO2	μg/l	5	ISO 17025	52
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	45
Alkalinity as CaCO3	mg/l	3	ISO 17025	35
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	13
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.5
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	21
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	130

Hardness - Total	mgCaCO 3/I	1	ISO 17025	61.2
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	54
Bromide	mg/l	0.001	ISO 17025	0.037
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	16
Iron (dissolved)	mg/l	0.004	ISO 17025	0.062
Magnesium (dissolved)	mg/l	0.005	ISO 17025	5.1
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.4
Sodium (dissolved)	mg/l	0.01	ISO 17025	13

Aluminium (total)	mg/l	0.001	ISO 17025	0.157
Antimony (total)	μg/l	0.4	ISO 17025	0.7
Arsenic (total)	μg/l	0.15	ISO 17025	0.3
Barium (total)	μg/l	0.06	ISO 17025	37
Boron (total)	μg/l	10	ISO 17025	11
Cadmium (total)	μg/l	0.02	ISO 17025	0.03
Chromium (total)	μg/l	0.2	ISO 17025	0.5
Iron (total)	mg/l	0.004	ISO 17025	0.35
Manganese (total)	μg/l	0.05	ISO 17025	28
Molybdenum (total)	μg/l	0.05	ISO 17025	0.26
Nickel (total)	μg/l	0.5	ISO 17025	1.4
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	0.3
Zinc (total)	μg/l	0.5	ISO 17025	21

Calcium (total)	mg/l	0.012	ISO 17025	16
Magnesium (total)	mg/l	0.005	ISO 17025	5.2
Potassium (total)	mg/l	0.025	ISO 17025	1.6

Analytical Report Number: 23-33670 Project / Site name: Kintore-Hydrogen Plant

Lab Sample Number	2678453									
Sample Reference Sample Number Depth (m) Date Sampled										
					Time Taken					
					Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		
					Sodium (total)	mg/l	0.01	ISO 17025	13	
Aluminium (dissolved)	μg/l	1	ISO 17025	32						
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4						
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.24						
Barium (dissolved)	μg/l	0.06	ISO 17025	33						
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02						
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.4						
Copper (dissolved)	μg/l	0.5	ISO 17025	3.2						
Manganese (dissolved)	μg/l	0.05	ISO 17025	4.7						
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.25						
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.1						
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6						
Tin (dissolved)	μg/l	0.2	ISO 17025	0.23						
Zinc (dissolved)	μg/l	0.5	ISO 17025	8.9						
Copper (total)	μg/l	0.5	ISO 17025	4.9						

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not Detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW. Al=SW,PW.	by ICP-MS. Accredited Matrices: SW, GW, PW 200.8 "for the determination of trace elements in		W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (AI, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration (colorimetry).	In house method based on MEWAM & USEPA Method 310.2.	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	w	ISO 17025
Bromide in water by IC	e in water by IC Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW. In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500		L008-PL	w	ISO 17025
Electrical conductivity at 20oC of water	cal conductivity at 20oC of water Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW In-house method		L031-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton		L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.			w	ISO 17025
and Wastewater 20th Edition:		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW. In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,		L078-PL	W	ISO 17025
pH at 20oC in water (automated)	20oC in water (automated) Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW		L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	al Oxygen Demand in Water (Total) Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.		L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)			L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW. In house method based on Stanth the Analysis of Water and Waster 4500		L008-PL	w	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined cravimetrically using the moisture content which is carried out at a maximum of 30oC

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
SW01	None Supplied	W	2678453	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW01	None Supplied	W	2678453	С	Ammonium as NH4 in water	L082-PL	С
SW01	None Supplied	W	2678453	С	Electrical conductivity at 20oC of water	L031-PL	С
SW01	None Supplied	W	2678453	С	Turbidity of in water	L083-PL	С
SW01	None Supplied	W	2678453	С	pH at 20oC in water (automated)	L099-PL	С

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH

e: acowe@slrconsulting.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-43811

Project / Site name: Kintore - Hydrogen Plant Samples received on: 07/07/2023

Your job number: 428.012991.00001 **Samples instructed on/** 07/07/2023

Analysis started on:

Your order number: 004968.405 Analysis completed by: 19/07/2023

Report Issue Number: 1 **Report issued on:** 19/07/2023

Samples Analysed: 1 water sample

Signed:

Anna Goc

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 004968.405

Lab Sample Number	2740627			
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled	06/07/2023			
Time Taken	1345			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

Turbidity	NTU	1	NONE	1.7
Sulphate as SO4	mg/l	0.045	ISO 17025	9.35
Chloride	mg/l	0.15	ISO 17025	21
Silicon (total)	μg/l	50	NONE	6200
Fluoride	μg/l	50	ISO 17025	53
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	610
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.55
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.57
Nitrate as N	mg/l	0.01	ISO 17025	2.33
Nitrate as NO3	mg/l	0.05	ISO 17025	10.3
Nitrite as N	μg/l	1	ISO 17025	34
Nitrite as NO2	μg/l	5	ISO 17025	110
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	52
Alkalinity as CaCO3	mg/l	3	ISO 17025	50
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	13
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.4
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	2
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	160

Hardness - Total	3/I	1	ISO 17025	66.5
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	64
Bromide	mg/l	0.001	ISO 17025	0.035
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Your Order No: 004968.405

Lab Sample Number				2740627
Sample Reference				SW01
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	06/07/2023			
Time Taken				1345
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Heavy Metals / Metalloids				
Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	18
Iron (dissolved)	mg/l	0.004	ISO 17025	0.034
Magnesium (dissolved)	mg/l	0.005	ISO 17025	5.5
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.5
Sodium (dissolved)	mg/l	0.01	ISO 17025	13
Aluminium (total)	mg/l	0.001	ISO 17025	0.0382
Antimony (total)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (total)	μg/l	0.15	ISO 17025	0.31
Barium (total)	μg/l	0.06	ISO 17025	40
Cadmium (total)	μg/l	0.02	ISO 17025	< 0.02
Chromium (total)	μg/l	0.2	ISO 17025	1
Iron (total)	mg/l	0.004	ISO 17025	0.11
Manganese (total)	μg/l	0.05	ISO 17025	22
Molybdenum (total)	μg/l	0.05	ISO 17025	0.56
Nickel (total)	μg/l	0.5	ISO 17025	1.3
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	2
Zinc (total)	µg/I	0.5	ISO 17025	13
Calcium (total)	mg/l	0.012	ISO 17025	18
Magnesium (total)	mg/l	0.005	ISO 17025	5.8
Potassium (total)	mg/l	0.025	ISO 17025	1.5
Sodium (total)	mg/l	0.01	ISO 17025	14
Aluminium (dissolved)	μg/l	1	ISO 17025	6
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.3
Barium (dissolved)	μg/l	0.06	ISO 17025	38
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.8
Copper (dissolved)	μg/l	0.5	ISO 17025	10
Manganese (dissolved)	μg/l	0.05	ISO 17025	1.3
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.46
Nickel (dissolved)	μg/l	0.5	ISO 17025	1
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025 ISO 17025	0.76
Zinc (dissolved)	μg/l	v.5	130 1/025	7.8
	8	4-	****	
Boron (total)	μg/l	10 0.5	ISO 17025 ISO 17025	< 10
Copper (total)	µg/I	0.5	150 1/025	16

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	ytical Method Description Analytical Method Reference			
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-0ES. Accredited matrices: SW PW GW, PrW (Al, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025-PL	W	NONE
Boron in water	in water Determination of boron in water by acidification followed In-house method based on MEWAM by ICP-OES. Accredited matrices: SW PW GW		L039-PL	w	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.			W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton		L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.			W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	N in water Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton		L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L005F	w	ISO 17025
Electrical conductivity of water	Determination of electrical conductivity in water by electrometric measurement. Accredited matrices SW, GW, PW. In-house method based on Examination of and Wastewater 20th Edition: Clesceri, Greenberg & Eaton		L031F	w	ISO 17025
Chemical Oxygen Demand in Water (Total)	hemical Oxygen Demand in Water (Total) Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.		L065-PL	w	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	w	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	w	ISO 17025
Bromate in Water	Promate in Water Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW. the Ar 4500		L008-PL	w	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	w	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Iss No 23-43811-1 Kintore - Hydrogen Plant 428.012991.00001

Analytical Report Number: 23-43811 Project / Site name: Kintore - Hydrogen Plant

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Otner ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
SW01	None Supplied	W	2740627	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW01	None Supplied	W	2740627	С	Ammonium as NH4 in water	L082-PL	С
SW01	None Supplied	W	2740627	С	c Electrical conductivity of water L		С
SW01	None Supplied	W	2740627	С	Turbidity of in water	L083-PL	С
SW01	None Supplied	W	2740627	С	pH in water	L005F	С

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. 40 Carron Pl, East Kilbride, Glasgow G75 0YL

t: 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 23-48637

Project / Site name: Kintore-Hydrogen Plant Samples received on: 02/08/2023

Your job number: 428.012991.00001 **Samples instructed on/** 02/08/2023

Analysis started on:

Your order number: 005485-405 Analysis completed by: 11/08/2023

Report Issue Number: 1 **Report issued on:** 11/08/2023

Samples Analysed: 1 water sample

Signed:

Alyssa Brown Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate

Lab Sample Number	2768586			
Sample Reference				SW01
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				01/08/2023
Time Taken				1330
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
General Inorganics				
pH in water (L005F)	pH Units	0.1	ISO 17025	7.5

General Inorganics				
pH in water (L005F)	pH Units	0.1	ISO 17025	7.5
Electrical conductivity of water (L031F)	μS/cm	10	ISO 17025	180
Turbidity	NTU	1	NONE	2.8
Sulphate as SO4	μg/l	45	ISO 17025	9160
Sulphate as SO4	mg/l	0.045	ISO 17025	9.16
Chloride	mg/l	0.15	ISO 17025	19
Silicon (total)	μg/l	50	NONE	3600
Fluoride	μg/l	50	ISO 17025	57
Ammonium as NH4	μg/l	15	ISO 17025	58
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	3.26
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	3.3
Nitrate as N	mg/l	0.01	ISO 17025	2.03
Nitrate as NO3	mg/l	0.05	ISO 17025	8.97
Nitrite as N	μg/l	1	ISO 17025	60
Nitrite as NO2	μg/l	5	ISO 17025	200
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	51
Alkalinity as CaCO3	mg/l	3	ISO 17025	53
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	13
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.1
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	4
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	120

Bromate by IC	mg/l	0.002	ISO 17025	< 0.002
Bromide	mg/l	0.001	ISO 17025	0.037
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	62
Hardness - Total	3/I	1	ISO 17025	62.5

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	16
Iron (dissolved)	mg/l	0.004	ISO 17025	0.05
Magnesium (dissolved)	mg/l	0.005	ISO 17025	5.3
Potassium (dissolved)	mg/l	0.025	ISO 17025	2
Sodium (dissolved)	mg/l	0.01	ISO 17025	14

Aluminium (total)	mg/l	0.001	ISO 17025	0.075
Antimony (total)	μg/l	0.4	ISO 17025	0.7
Arsenic (total)	μg/l	0.15	ISO 17025	0.4
Barium (total)	μg/l	0.06	ISO 17025	34
Boron (total)	μg/l	10	ISO 17025	13
Cadmium (total)	μg/l	0.02	ISO 17025	0.04
Chromium (total)	μg/l	0.2	ISO 17025	0.7
Iron (total)	mg/l	0.004	ISO 17025	0.18
Manganese (total)	μg/l	0.05	ISO 17025	33
Molybdenum (total)	μg/l	0.05	ISO 17025	0.8
Nickel (total)	μg/l	0.5	ISO 17025	1.7
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	0.73
Zinc (total)	μg/l	0.5	ISO 17025	27

Lab Sample Number				2768586
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)				None Supplied
Date Sampled	01/08/2023			
Time Taken				1330
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Calcium (total)	mg/l	0.012	ISO 17025	17
Magnesium (total)	mg/l	0.005	ISO 17025	5.5
Potassium (total)	mg/l	0.025	ISO 17025	2.3
Sodium (total)	mg/l	0.01	ISO 17025	17
(10.11)				
Aluminium (dissolved)	μg/l	1	ISO 17025	11
Antimony (dissolved)	μg/l	0.4	ISO 17025	0.5
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.33
Barium (dissolved)	μg/l	0.06	ISO 17025	30
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5
Copper (dissolved)	μg/l	0.5	ISO 17025	6.9
Manganese (dissolved)	μg/l	0.05	ISO 17025	1.9
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.78
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.1
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	0.97
Zinc (dissolved)	μg/l	0.5	ISO 17025	13
		0.5	ISO 17025	
Copper (total)	μg/l	0.5	130 1/025	63

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not Detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (Al, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025-PL	w	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/82-PL	w	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L005F	W	ISO 17025
Electrical conductivity of water	Determination of electrical conductivity in water by electrometric measurement. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031F	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburah EH12 9DH

i2 Analytical Ltd. 40 Carron Pl, East Kilbride, Glasgow G75 0YL

t: 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 23-55523

Project / Site name: Kintore-Hydrogen Plant Samples received on: 08/09/2023

Your job number: 428.012991.00001 Samples instructed on/ 08/09/2023 Analysis started on:

Your order number: 005821-405 Analysis completed by: 19/09/2023

19/09/2023 **Report Issue Number:** Report issued on:

Samples Analysed: 1 water sample

Signed:

Alvssa Brown Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 23-55523 Project / Site name: Kintore-Hydrogen Plant

Your Order No: 005821-405

10ui Oluci 140. 003021-403				
Lab Sample Number		2805854		
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)		None Supplied		
Date Sampled	07/09/2023			
Time Taken	1215			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH in water (L005F)	pH Units	0.1	ISO 17025	7.6
Electrical conductivity of water (L031F)	μS/cm	10	ISO 17025	190
Turbidity	NTU	1	NONE	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	9390
Sulphate as SO4	mg/l	0.045	ISO 17025	9.4
Chloride	mg/l	0.15	ISO 17025	22
Silicon (total)	μg/l	50	NONE	6800
Fluoride	μg/l	50	ISO 17025	53
Ammonium as NH4	μg/l	15	ISO 17025	85
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.41
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.78
Nitrate as N	mg/l	0.01	ISO 17025	2.48
Nitrate as NO3	mg/l	0.05	ISO 17025	11
Nitrite as N	μg/l	1	ISO 17025	27
Nitrite as NO2	μg/l	5	ISO 17025	87
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	56
Alkalinity as CaCO3	mg/l	3	ISO 17025	59
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	5.4
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.5
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	4
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	120

Hardness - Total	3/I	1	ISO 17025	69.3
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	69
Bromide	mg/l	0.001	ISO 17025	0.038
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	18
Iron (dissolved)	mg/l	0.004	ISO 17025	0.027
Magnesium (dissolved)	mg/l	0.005	ISO 17025	5.8
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.4
Sodium (dissolved)	mg/l	0.01	ISO 17025	14

Aluminium (total)	mg/l	0.001	ISO 17025	0.0167
Antimony (total)	μg/l	0.4	ISO 17025	0.4
Arsenic (total)	μg/l	0.15	ISO 17025	0.29
Barium (total)	μg/l	0.06	ISO 17025	33
Boron (total)	μg/l	10	ISO 17025	< 10
Cadmium (total)	μg/l	0.02	ISO 17025	< 0.02
Chromium (total)	μg/l	0.2	ISO 17025	0.6
Iron (total)	mg/l	0.004	ISO 17025	0.11
Manganese (total)	μg/l	0.05	ISO 17025	12
Molybdenum (total)	μg/l	0.05	ISO 17025	0.58
Nickel (total)	μg/l	0.5	ISO 17025	1.1
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	1.8
Zinc (total)	μg/l	0.5	ISO 17025	5.4

Your Order No: 005821-405

		2805854						
Sample Reference Sample Number Depth (m)								
								07/09/2023
								1215
Limit of detection	Accreditation Status							
0.012	ISO 17025	10						
0.012	ISO 17025 ISO 17025	19 6.1						
	ISO 17025							
0.025	ISO 17025	1.4						
0.01	130 17023	14						
1	ISO 17025	4.2						
0.4	ISO 17025	< 0.4						
0.15	ISO 17025	0.28						
0.06	ISO 17025	33						
0.02	ISO 17025	< 0.02						
0.2	ISO 17025	0.4						
0.5	ISO 17025	3.8						
0.05	ISO 17025	0.78						
0.05	ISO 17025	0.33						
0.5	ISO 17025	0.7						
0.6	ISO 17025	< 0.6						
0.2	ISO 17025	0.58						
0.5	ISO 17025	4.9						
		0.5 ISO 17025						

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not Detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (Al, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025-PL	w	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/82-PL	w	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	est Name Analytical Method Description Analytical Method Reference		Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L005F	W	ISO 17025
Electrical conductivity of water	Determination of electrical conductivity in water by electrometric measurement. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031F	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Analytical Report Number: 23-55523 Project / Site name: Kintore-Hydrogen Plant

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
SW01	None Supplied	W	2805854	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW01	None Supplied	W	2805854	С	Ammonium as NH4 in water	L082-PL	С
SW01	None Supplied	W	2805854	С	Electrical conductivity of water	L031F	С
SW01	None Supplied	W	2805854	С	Turbidity of in water	L083-PL	С
SW01	None Supplied	W	2805854	С	pH in water	L005F	С

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburah EH12 9DH

i2 Analytical Ltd. 40 Carron PI, East Kilbride, Glasgow G75 0YL

t: 01355202915 **f:** 01923237404

e: acowe@slrconsulting.com e: scotland@i2analytical.com

Analytical Report Number: 23-62126

Project / Site name: Kintore - Hydrogen Plant Samples received on: 12/10/2023

Your job number: 428.012991.00001 Samples instructed on/ 12/10/2023

Analysis started on:

Your order number: 006581-405 Analysis completed by: 23/10/2023

Report Issue Number: Report issued on: 26/10/2023

Samples Analysed: 1 water sample

Signed:

Alvssa Brown Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number	2842852			
Sample Reference				SW01
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled	11/10/2023			
Time Taken				1400
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

General Inorganics				
pH in water (L005F)	pH Units	0.1	ISO 17025	7.2
Electrical conductivity of water (L031F)	μS/cm	10	ISO 17025	150
Turbidity	NTU	1	NONE	1
Sulphate as SO4	μg/l	45	ISO 17025	8810
Sulphate as SO4	mg/l	0.045	ISO 17025	8.81
Chloride	mg/l	0.15	ISO 17025	18
Silicon (total)	μg/l	50	NONE	3700
Fluoride	μg/l	50	ISO 17025	67
Ammonium as NH4	μg/l	15	ISO 17025	190
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	9.45
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	9.16
Nitrate as N	mg/l	0.01	ISO 17025	2.25
Nitrate as NO3	mg/l	0.05	ISO 17025	9.96
Nitrite as N	μg/l	1	ISO 17025	6.3
Nitrite as NO2	μg/l	5	ISO 17025	21
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	36
Alkalinity as CaCO3	mg/l	3	ISO 17025	31
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	20
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.3
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	9
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	120

Hardness - Total	mgCaCO 3/I	1	ISO 17025	48
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	44
Bromide	mg/l	0.001	ISO 17025	0.026
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	11
Calcium (dissolved)	mg/l	0.012	ISO 17025	13
Iron (dissolved)	mg/l	0.004	ISO 17025	0.086
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.7
Sodium (dissolved)	mg/l	0.01	ISO 17025	11

Aluminium (total)	mg/l	0.001	ISO 17025	0.0604
Antimony (total)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (total)	μg/l	0.15	ISO 17025	0.33
Barium (total)	μg/l	0.06	ISO 17025	31
Boron (total)	μg/l	10	ISO 17025	15
Cadmium (total)	μg/l	0.02	ISO 17025	< 0.02
Chromium (total)	μg/l	0.2	ISO 17025	1.1
Iron (total)	mg/l	0.004	ISO 17025	0.33
Manganese (total)	μg/l	0.05	ISO 17025	12
Molybdenum (total)	μg/l	0.05	ISO 17025	0.49
Nickel (total)	μg/l	0.5	ISO 17025	1.9
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	< 0.20
Zinc (total)	μg/l	0.5	ISO 17025	9.5

Lab Sample Number				2842852
Sample Reference				SW01
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				11/10/2023
Time Taken				1400
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Calcium (total)	mg/l	0.012	ISO 17025	13
Magnesium (total)	mg/l	0.005	ISO 17025	4.2
Potassium (total)	mg/l	0.025	ISO 17025	1.9
Sodium (total)	mg/l	0.01	ISO 17025	12
Aluminium (dissolved)	μg/l	1	ISO 17025	39
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.3
Barium (dissolved)	μg/l	0.06	ISO 17025	30
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.7
Copper (dissolved)	μg/l	0.5	ISO 17025	14
Manganese (dissolved)	μg/l	0.05	ISO 17025	3.8
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.46
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.8
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	< 0.20
Zinc (dissolved)	μg/l	0.5	ISO 17025	1.7
			•	
Copper (total)	μg/l	0.5	ISO 17025	26

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not Detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference		Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (Al, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	tical Test Name Analytical Method Description Analytical Method Reference		Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L005F	W	ISO 17025
Electrical conductivity of water	Determination of electrical conductivity in water by electrometric measurement. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031F	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH

i2 Analytical Ltd. 40 Carron Pl, East Kilbride, Glasgow G75 0YL

t: 01355202915 **f:** 01923237404

e: acowe@slrconsulting.com e: scotland@i2analytical.com

Analytical Report Number: 23-69660

Samples received on: 17/11/2023 **Project / Site name:** Kintore Hydrogen Plant

Your job number: 428.012991.00001 Samples instructed on/ 17/11/2023

Analysis started on:

Your order number: Analysis completed by: 006958.405 29/11/2023

Report Issue Number: 1 Report issued on: 29/11/2023

Samples Analysed: 1 water sample

Signed: Ashleigh Cumpham.

Ashleigh Cunningham Customer Service Manager

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: 006958.405

Lab Sample Number	2882797			
Sample Reference				SW01
Sample Number				None Supplied
Depth (m)		None Supplied		
Date Sampled	16/11/2023			
Time Taken				1420
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH (L099)	pH Units	N/A	ISO 17025	7.5
Electrical Conductivity at 20 °C (L031B)	μS/cm	10	ISO 17025	140
Turbidity	NTU	1	NONE	1.6
Sulphate as SO4	μg/l	45	ISO 17025	7090
Sulphate as SO4	mg/l	0.045	ISO 17025	7.09
Chloride	mg/l	0.15	ISO 17025	18
Silicon (total)	μg/l	50	NONE	2500
Fluoride	μg/l	50	ISO 17025	62
Ammonium as NH4	μg/l	15	ISO 17025	5700
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	5.82
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	6.18
Nitrate as N	mg/l	0.01	ISO 17025	2.47
Nitrate as NO3	mg/l	0.05	ISO 17025	10.9
Nitrite as N	μg/l	1	ISO 17025	2.3
Nitrite as NO2	μg/l	5	ISO 17025	7.4
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	36
Alkalinity as CaCO3	mg/l	3	ISO 17025	35
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	16
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.5
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	6
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	58

Hardness - Total	mgCaCO 3/I	1	ISO 17025	44.6
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	43
Bromide	mg/l	0.001	ISO 17025	0.046
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	12
Iron (dissolved)	mg/l	0.004	ISO 17025	0.079
Magnesium (dissolved)	mg/l	0.005	ISO 17025	3.7
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.3
Sodium (dissolved)	mg/l	0.01	ISO 17025	9.2

Aluminium (total)	mg/l	0.001	ISO 17025	0.0772
Antimony (total)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (total)	μg/l	0.15	ISO 17025	0.25
Barium (total)	μg/l	0.06	ISO 17025	38
Boron (total)	μg/l	10	ISO 17025	< 10
Cadmium (total)	μg/l	0.02	ISO 17025	0.03
Chromium (total)	μg/l	0.2	ISO 17025	0.6
Iron (total)	mg/l	0.004	ISO 17025	0.18
Manganese (total)	μg/l	0.05	ISO 17025	18
Molybdenum (total)	μg/l	0.05	ISO 17025	0.63
Nickel (total)	μg/l	0.5	ISO 17025	1.7
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	< 0.20
Zinc (total)	μg/l	0.5	ISO 17025	50

Your Order No: 006958.405

Tin (dissolved)

Zinc (dissolved)

Copper (total)

Lab Sample Number	2882797			
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)				None Supplied
Date Sampled				16/11/2023
Time Taken				1420
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Calcium (total)	mg/l	0.012	ISO 17025	12
Magnesium (total)	mg/l	0.005	ISO 17025	3.9
Potassium (total)	mg/l	0.025	ISO 17025	1.4
Sodium (total)	mg/l	0.01	ISO 17025	9.4
Aluminium (dissolved)	μg/l	1	ISO 17025	62
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.22
Barium (dissolved)	μg/l	0.06	ISO 17025	32
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.6
Copper (dissolved)	μg/l	0.5	ISO 17025	6.7
Manganese (dissolved)	μg/l	0.05	ISO 17025	9.7
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.23
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.4
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6

μg/l

μg/l

μg/l

0.2

0.5

ISO 17025

ISO 17025

ISO 17025

< 0.20

11

10

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not Detected

Analytical Report Number: 23-69660 Project / Site name: Kintore Hydrogen Plant

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW. Determination of metals in water by acidification followed In-house method based on USEPA Method 6020 200.8 "for the determination of trace elements in water by ICP-MS.				ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (AI, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN- 82/C-04579.08	L078/82-PL	W	NONE

Analytical Report Number : 23-69660 Project / Site name: Kintore Hydrogen Plant

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	in water Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW. In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,		L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric In house method. measurement. Accredited matrices: SW PW GW		L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Demand in Water (Total) Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW. HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)		L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.			W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Analytical Report Number : 23-69660 Project / Site name: Kintore Hydrogen Plant

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	()ther II)	-	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
SW01	None Supplied	W	2882797	С	Electrical conductivity at 20oC of water	L031-PL	С
SW01	None Supplied	W	2882797	С	Turbidity of in water	L083-PL	С
SW01	None Supplied	W	2882797	С	pH at 20oC in water (automated)	L099-PL	С

Beckman Coulter LS Particle Size Analyzer

27 Nov 2023

Kenneth Pye Associates Ltd -

File name: C:\LS13320\Analyses\i2 Analytical\27-11-2023 23-69660\2882797.\$ls

2882797.\$ls

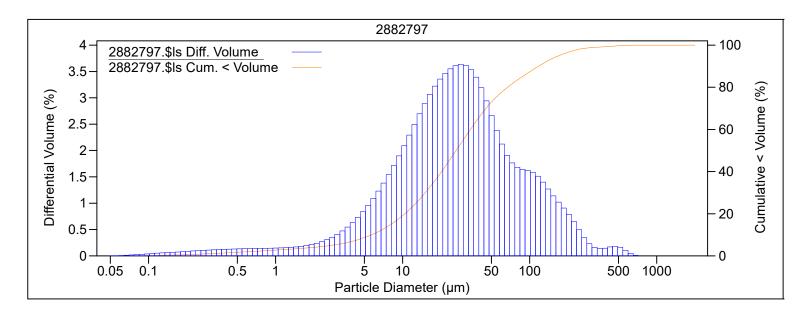
File ID: 2882797
Sample ID: 2882797
Operator: sjb
Run number: 6017

Comment 1: Job No: 23-69660

Comment 2: SW01 16/11/2023 14:20 SLR Kintore Optical model: NMBAQC.rf780d PIDS included

Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.20%


LS 13 320 Universal Liquid Module

Start time: 10:17 27 Nov 2023 Run length: 53 seconds

Pump speed: 50%
Obscuration: 4%
Fluid: Water
Software: 6.01

PIDS Obscur: 38%

Firmware: 4.00

27 Nov 2023

Kenneth Pye Associates Ltd —

Volume Statistics (Geometric) 2882797.\$ls

Calculations from 0.040 μm to 2000 μm

100% Volume:

Mean: 24.45 µm S.D.: 3.664 26.44 µm Variance: 13.42 Median:

6.097 µm -0.864 Left skewed D(3,2): Skewness: Mean/Median ratio: 2.109 Leptokurtic 0.925 Kurtosis:

Mode: 28.70 µm

d₁₀: 5.703 μm d₅₀: 26.44 µm 117.4 µm

Folk and Ward Statistics (Phi)

Mean: 5.23 Median: 5.24 Deviation: 1.72

Kurtosis: Skewness: 0.04 1.17

<10% <25% <50% <75% <90% 5.703 µm 12.73 µm 53.94 µm 117.4 µm 26.44 µm

<2 µm <63 µm <2000 µm 4.04% 78.7% 100%

2882797.\$ls					
Particle	Volume	Particle	Volume		
Diameter	%	Diameter	%		
μm		μm			
0.043	0.0021	31.25	6.58		
0.051	0.0074	37.16	6.06		
0.061	0.024	44.19	5.21		
0.073	0.042	52.56	4.38		
0.086	0.068	63	3.46		
0.103	0.086	75	3.27		
0.122	0.11	90	2.83		
0.145	0.13	106	2.69		
0.173	0.15	125	2.55		
0.205	0.17	150	2.07		
0.244	0.19	180	1.49		
0.29	0.21	212	1.05		
0.345	0.23	250	0.65		
0.411	0.24	300	0.31		
0.488	0.25	355	0.29		
0.581	0.26	425	0.31		
0.691	0.26	500	0.25		
0.821	0.27	600	0.052		
0.977	0.28	710	0.0019		
1.161	0.30	850	0		
1.381	0.33	1000	0		
1.642	0.38	1180	0		
1.953	0.45	1400	0		
2.323	0.57	1700	0		
2.762	0.74	2000			
3.285	0.97				
3.906 4.645	1.27 1.65				
5.524	2.09				
6.57	2.60				
7.813	3.18				
9.291	3.83				
11.05	4.52				
13.14	5.22				
15.63	5.80				
18.58	6.28				
22.1	6.59				
26.28	6.73				

27 Nov 2023

-Kenneth Pye Associates Ltd -----

2882797.\$ls						
Channel Diameter (Lower)	Diff. Volume %	Cum. < Volume %	Channel Diameter (Lower)	Diff. Volume %	Cum. < Volume	
4.655 5.110	0.00075 0.00099 0.0016 0.0033 0.0068 0.012 0.019 0.025 0.031 0.037 0.044 0.050 0.056 0.062 0.068 0.074 0.080 0.086 0.093 0.10 0.11 0.12 0.12 0.12 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.16 0.17 0.18 0.20 0.22 0.24 0.27 0.31 0.35 0.41 0.47 0.55 0.63 0.73 0.84 0.96 1.099 1.23 1.38 1.54 1.71 1.90 2.09 2.29	0 0.00075 0.0017 0.0033 0.0066 0.013 0.026 0.045 0.070 0.10 0.14 0.18 0.23 0.29 0.35 0.42 0.49 0.57 0.66 0.75 0.85 0.96 1.07 1.18 1.30 1.43 1.56 1.69 1.82 1.96 2.10 2.24 2.38 2.52 2.67 2.82 2.97 3.12 3.29 3.46 3.84 4.05 4.29 4.56 4.87 5.22 5.63 6.10 6.65 7.29 8.02 8.86 9.81 10.9 11.15 11.16 11.1	493.6 541.9 594.9 653.0	0.11 0.047 0.0098 0.00085 0	23.1 25.5 28.2 31.1 34.2 37.4 40.8 44.2 47.8 51.4 55.0 58.7 62.2 65.6 68.8 71.7 74.4 76.8 78.9 80.8 82.6 84.2 85.9 87.5 89.1 90.6 92.0 93.3 94.4 96.3 97.1 97.8 98.3 99.0 99.2 99.3 99.7 99.8 99.9 90.9	

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH

i2 Analytical Ltd. 9 Langlands Place, Kelvin South Business Park, East Kilbride, Glasgow, G75 0YF

t: 01355202915 f: 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 23-75814

Project / Site name: Kintore Hydrogent Plant Samples received on: 19/12/2023

428.012991.00001 Your job number: Samples instructed on/ 19/12/2023

Analysis started on:

Your order number: 007367-405 Analysis completed by: 05/01/2024

Report Issue Number: 1 Report issued on: 05/01/2024

Samples Analysed: 1 water sample

Signed: Askleyt Cumpan.

Ashleigh Cunningham **Customer Service Manager**

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 23-75814 Project / Site name: Kintore Hydrogent Plant

Your Order No: 007367-405

Lab Sample Number						
Sample Reference				SW01		
Sample Number				None Supplied		
Depth (m)				None Supplied		
Date Sampled	18/12/2023					
Time Taken						
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			

General Inorganics

pH (L099)	pH Units	N/A	ISO 17025	7.4
Electrical Conductivity at 20 °C (L031B)	μS/cm	10	ISO 17025	170
Turbidity	NTU	1	NONE	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	9040
Sulphate as SO4	mg/l	0.045	ISO 17025	9.04
Chloride	mg/l	0.15	ISO 17025	18
Silicon (total)	μg/l	50	NONE	2000
Fluoride	μg/l	50	ISO 17025	59
Ammonium as NH4	μg/l	15	ISO 17025	46
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	3.1
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	3.45
Nitrate as N	mg/l	0.01	ISO 17025	3.21
Nitrate as NO3	mg/l	0.05	ISO 17025	14.2
Nitrite as N	μg/l	1	ISO 17025	3.9
Nitrite as NO2	μg/l	5	ISO 17025	13
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	38
Alkalinity as CaCO3	mg/l	3	ISO 17025	37
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	8.4
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	3.2
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	< 2.0
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	110

Hardness - Total	mgCaCO 3/I	1	ISO 17025	55
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	46
Bromide	mg/l	0.001	ISO 17025	0.044
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Boron (dissolved)	μg/l	10	ISO 17025	11
Calcium (dissolved)	mg/l	0.012	ISO 17025	14
Iron (dissolved)	mg/l	0.004	ISO 17025	0.051
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.7
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.4
Sodium (dissolved)	mg/l	0.01	ISO 17025	11

Aluminium (total)	mg/l	0.001	ISO 17025	0.0684
Antimony (total)	μg/l	0.4	ISO 17025	0.4
Arsenic (total)	μg/l	0.15	ISO 17025	0.31
Barium (total)	μg/l	0.06	ISO 17025	45
Boron (total)	μg/l	10	ISO 17025	11
Cadmium (total)	μg/l	0.02	ISO 17025	0.04
Chromium (total)	μg/l	0.2	ISO 17025	1.1
Iron (total)	mg/l	0.004	ISO 17025	0.17
Manganese (total)	μg/l	0.05	ISO 17025	28
Molybdenum (total)	μg/l	0.05	ISO 17025	0.22
Nickel (total)	μg/l	0.5	ISO 17025	1.4
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	0.4
Zinc (total)	μg/l	0.5	ISO 17025	14

Copper (total)

Analytical Report Number: 23-75814 Project / Site name: Kintore Hydrogent Plant

Your Order No: 007367-405

Lab Sample Number				2916042
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				18/12/2023
Time Taken				1455
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Calcium (total)	mg/l	0.012	ISO 17025	15
Magnesium (total)	mg/l	0.005	ISO 17025	5
Potassium (total)	mg/l	0.025	ISO 17025	1.5
Sodium (total)	mg/l	0.01	ISO 17025	11
Aluminium (dissolved)	μg/l	1	ISO 17025	21
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.2
Barium (dissolved)	μg/l	0.06	ISO 17025	34
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	1.1
Copper (dissolved)	μg/l	0.5	ISO 17025	3
Manganese (dissolved)	μg/l	0.05	ISO 17025	9.1
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.21
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.1
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	0.23
Zinc (dissolved)	μg/l	0.5	ISO 17025	7.2

0.5 ISO 17025

μg/l

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \mbox{Insufficient Sample} \hspace{0.5cm} \mbox{ND} = \mbox{Not Detected}$

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	tical Test Name Analytical Method Description Analytical Method Reference		Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-0ES. Accredited matrices: SW PW GW, PrW (Al, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-0ES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nibrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.Accredited Matrices PW, SW, GW, FSE, PrW, LL	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference		Wet / Dry Analysis	Accreditation Status
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/82-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Beckman Coulter LS Particle Size Analyzer

21 Dec 2023

Kenneth Pye Associates Ltd –

File name: C:\LS13320\Analyses\i2 Analytical\21-12-2023 23-75814\2916042.\$ls

2916042.\$ls

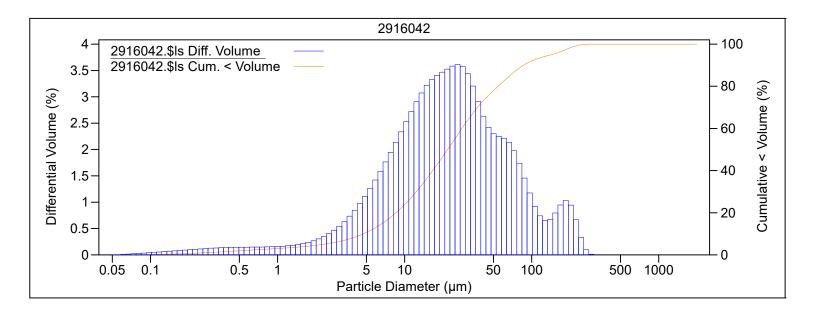
File ID: 2916042 Sample ID: 2916042 Operator: sjb Run number: 6207

Comment 1: Job No: 23-75814 Comment 2: SW01 18/12/2023

Optical model: NMBAQC.rf780d PIDS included

Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.74%


LS 13 320 Universal Liquid Module

Start time: 13:41 21 Dec 2023 Run length: 51 seconds

Pump speed: 51%
Obscuration: 5%
Fluid: Water
Software: 6.01

PIDS Obscur: 31%

Firmware: 4.00

Kenneth Pye Associates Ltd —

21 Dec 2023

Volume Statistics (Geometric) 2916042.\$ls

Calculations from 0.040 μm to 2000 μm

100% Volume:

Mean: 19.90 µm S.D.: 3.554 21.84 µm Variance: 12.63 Median:

5.372 µm -0.909 Left skewed D(3,2): Skewness: Mean/Median ratio: Kurtosis: 2.025 Leptokurtic 0.911

Mode: 26.14 µm

d₁₀: 4.734 µm d₅₀: 21.84 μm d₉₀: 86.48 μm

Folk and Ward Statistics (Phi)

Mean: 5.54 Median: 5.52 Deviation: 1.70

Kurtosis: Skewness: 0.06 1.17

<10% <25% <50% <75% <90% 4.734 µm 10.43 µm 44.54 µm 86.48 µm 21.84 µm

<2 µm <63 µm <2000 µm 4.53% 83.5% 100%

2916042.\$ls				
Particle	Volume	Particle	Volume	
Diameter	8	Diameter	િ	
μm		μm		
0.043	0.0023	31.25	6.02	
0.051	0.0083	37.16	5.08	
0.061	0.027	44.19	4.39	
0.073	0.046	52.56	4.33	
0.086	0.075	63	3.86	
0.103	0.096	75	3.24	
0.122	0.12	90	2.01	
0.145	0.15	106	1.38	
0.173	0.17	125	1.33	
0.205	0.20	150	1.75	
0.244	0.22	180	1.73	
0.29	0.24 0.26	212 250	0.96 0.21	
0.345	0.26	300	0.0051	
0.488	0.27	355	0.0031	
0.581	0.28	425	0	
0.691	0.28	500	0	
0.821	0.29	600	0	
0.977	0.30	710	0	
1.161	0.33	850	0	
1.381	0.38	1000	0	
1.642	0.46	1180	0	
1.953	0.58	1400	0	
2.323	0.75	1700	0	
2.762	0.99	2000		
3.285	1.30			
3.906	1.70			
4.645	2.18			
5.524 6.57	2.72 3.32			
7.813	3.96			
9.291	4.64			
11.05	5.29			
13.14	5.87			
15.63	6.21			
18.58	6.47			
22.1	6.65			
26.28	6.60			

-Kenneth Pye Associates Ltd -----

2916042.\$ls						
Channel Diameter	Diff. Volume	Cum. < Volume	Channel Diameter	Diff. Volume	Cum. < Volume	
(Lower) μm	90	%	(Lower) µm	90	%	
0.040	0.00081 0.0011	0 0.00081	11.83 12.99	2.91 3.07	28.6 31.5	
0.048	0.0018 0.0037	0.0019	14.26 15.65	3.22 3.33	34.6 37.8	
0.058	0.0076	0.0074	17.18	3.41	41.2	
0.064 0.070	0.014 0.021	0.015 0.029	18.86 20.70	3.47 3.53	44.6 48.0	
0.077	0.028 0.034	0.050 0.077	22.73 24.95	3.58 3.61	51.6 55.1	
0.093 0.102	0.041	0.11 0.15	27.39 30.07	3.57 3.44	58.8 62.3	
0.112 0.122	0.056 0.063	0.20 0.26	33.01 36.24	3.20 2.91	65.8 69.0	
0.134 0.148	0.070 0.077	0.32 0.39	39.78 43.67	2.63	71.9 74.5	
0.162	0.084	0.47	47.94	2.30	76.9	
0.178 0.195	0.091 0.098	0.55 0.64	52.62 57.77	2.25	79.2 81.5	
0.214 0.235	0.11 0.11	0.74 0.85	63.41 69.61	2.14 1.98	83.7 85.8	
0.258	0.12 0.13	0.96 1.08	76.42 83.89	1.74 1.46	87.8 89.5	
0.311 0.342	0.13 0.14	1.21 1.34	92.09 101.1	1.18 0.92	91.0 92.2	
0.375	0.14	1.47 1.61	111.0 121.8	0.74 0.65	93.1 93.8	
0.452	0.14	1.76	133.7	0.68	94.5	
0.496	0.15 0.15	1.90 2.05	146.8 161.2	0.80	95.2 96.0	
0.598 0.656	0.15 0.15	2.19 2.34	176.9 194.2	1.03 0.95	96.9 97.9	
0.721 0.791	0.15 0.15	2.49 2.64	213.2 234.1	0.67 0.33	98.9 99.6	
0.868 0.953	0.15 0.16	2.79 2.95	256.9 282.1	0.096 0.013	99.9 99.99	
1.047 1.149	0.16 0.17	3.11 3.27	309.6 339.9	0.00041	100 100	
1.261	0.18	3.44 3.63	373.1 409.6	0	100	
1.520	0.22	3.82 4.04	449.7 493.6	0	100 100 100	
1.832	0.27	4.28	541.9	0	100	
2.011 2.207	0.31 0.35	4.55 4.85	594.9 653.0	0	100 100	
2.423 2.660	0.40 0.47	5.20 5.61	716.8 786.9	0	100 100	
2.920 3.205	0.54 0.63	6.07 6.62	863.9 948.3	0	100 100	
3.519 3.863	0.73 0.85	7.25 7.99	1041 1143	0	100 100	
4.240 4.655	0.97 1.11	8.83 9.81	1255 1377	0	100	
5.110 5.610	1.26 1.42	10.9 12.2	1512 1660	0	100	
6.158	1.59	13.6	1822	0	100	
6.760 7.421	1.76 1.95	15.2 17.0	2000		100	
8.147 8.943	2.14 2.34	18.9 21.0				
9.817 10.78	2.53 2.72	23.4 25.9				

Adrian Cowe

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburah EH12 9DH

i2 Analytical Ltd. 9 Langlands Place, Kelvin South Business Park, East Kilbride, Glasgow, G75 0YF

t: 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Analytical Report Number: 24-79446

Project / Site name: Kintore - Hydrogen Plant Samples received on: 23/01/2024

Your job number: 428.012991.00001 Samples instructed on/ 23/01/2024

Analysis started on:

Your order number: 007730-405 Analysis completed by: 01/02/2024

Report Issue Number: Report issued on: 06/02/2024

Samples Analysed: 1 water sample

Signed: Ashleyt Cumpram

Ashleigh Cunningham Customer Service Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2934942
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	23/01/2024			
Time Taken	1055			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
General Inorganics				
pH (L099)	pH Units	N/A	ISO 17025	7.4
Electrical Conductivity at 20 °C (L031B)	μS/cm	10	ISO 17025	130
Turbidity	NTU	1	NONE	6.2
Sulphate as SO4	μg/l	45	ISO 17025	7800
Sulphate as SO4	mg/l	0.045	ISO 17025	7.8
Chloride	mg/l	0.15	ISO 17025	19
Silicon (total)	μg/l	50	NONE	1700
Fluoride	μg/l	50	ISO 17025	< 50
Ammonium as NH4	μg/l	15	ISO 17025	39
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	5.18
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	5.5
Nitrate as N	mg/l	0.01	ISO 17025	1.84
Nitrate as NO3	mg/l	0.05	ISO 17025	8.15
Nitrite as N	μg/l	1	ISO 17025	2.5
Nitrite as NO2	μg/l	5	ISO 17025	8.4
Alkalinity as CaCO3 (titration)	mg/l	3	NONE	18
Alkalinity as CaCO3	mg/l	3	ISO 17025	17
Chemical Oxygen Demand (Total) (L065B)	mg/l	2	ISO 17025	21
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	1.8
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	9
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	72
Total bissored somes (Gravimente) (E00 Ib)				72
Hardness - Total	mgCaCO 3/I	1	ISO 17025	43.6
Bicarbonate as HCO3 (titration)	mg/l	10	NONE	22
Bromide	mg/l	0.001	ISO 17025	0.04
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002
Heavy Metals / Metalloids				
Boron (dissolved)	μg/l	10	ISO 17025	11
Calcium (dissolved)	mg/l	0.012	ISO 17025	11
Iron (dissolved)	mg/l	0.012	ISO 17025	0.086
Magnesium (dissolved)	mg/l	0.005	ISO 17025	3.8
Potassium (dissolved)	mg/l	0.005	ISO 17025	1.6
Sodium (dissolved)	mg/l	0.01	ISO 17025	13
	-			13
Aluminium (total)	mg/l	0.001	ISO 17025	0.101
Antimony (total)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (total)	μg/l	0.15	ISO 17025	0.21
Barium (total)	μg/l	0.06	ISO 17025	30
Boron (total)	μg/l	10	ISO 17025	18
Cadmium (total)	μg/l	0.02	ISO 17025	0.03
Chromium (total)	μg/l	0.2	ISO 17025	0.9
Iron (total)	mg/l	0.004	ISO 17025	0.24
Manganese (total)	μg/l	0.05	ISO 17025	21
Molybdenum (total)	μg/l	0.05	ISO 17025	0.65
Nickel (total)	μg/l	0.5	ISO 17025	2.5
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (total)	μg/l	0.2	ISO 17025	3.3

Lab Sample Number	2934942			
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)				None Supplied
Date Sampled				23/01/2024
Time Taken				1055
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Zinc (total)	μg/l	0.5	ISO 17025	22
Calcium (total)	mg/l	0.012	ISO 17025	12
Magnesium (total)	mg/l	0.005	ISO 17025	3.7
Potassium (total)	mg/l	0.025	ISO 17025	1.4
Sodium (total)	mg/l	0.01	ISO 17025	12
			700 47005	
Aluminium (dissolved)	μg/l	1	ISO 17025	42
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.18
Barium (dissolved)	μg/l	0.06	ISO 17025	27
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5
Copper (dissolved)	μg/l	0.5	ISO 17025	3
Manganese (dissolved)	μg/l	0.05	ISO 17025	8.5
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.24
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.3
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	0.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	4.4
	I//	0.5	ICO 1702E	
Copper (total)	μg/l	0.5	ISO 17025	18

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \hspace{0.5cm} \mbox{Insufficient Sample} \hspace{0.5cm} \mbox{ND} = \hspace{0.5cm} \mbox{Not Detected}$

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
		In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW (Al, Fe, Cu, Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Alkalinity in Water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025-PL	W	NONE
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by addification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Suspended solids in water	Determined gravimetrically with GFC filtration papers.Accredited Matrices PW, SW, GW, FSE, PrW, LL	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/82-PL	W	NONE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name Analytical Method Description Analytical Met		Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples.	In-house method based on Standard Method 8237	L083-PL	W	NONE
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry.	In house method based on BSEN 15216:2007	L004-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Beckman Coulter LS Particle Size Analyzer

31 Jan 2024

Kenneth Pye Associates Ltd -

File name: C:\LS13320\Analyses\i2 Analytical\31-01-2024 24-79446\2934942.\$ls

2934942.\$ls

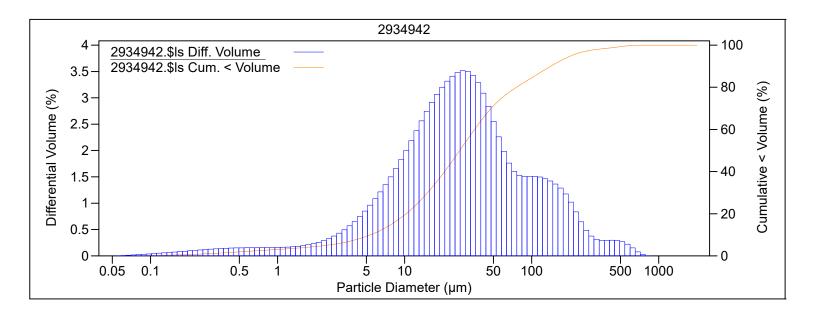
File ID: 2934942 Sample ID: 2934942 Operator: sjb Run number: 6536

Comment 1: Job No: 24-79446 Comment 2: SW01 23/01/2024

Optical model: NMBAQC.rf780d PIDS included

Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.18%


LS 13 320 Universal Liquid Module

Start time: 8:22 31 Jan 2024 Run length: 52 seconds

Pump speed: 50% Obscuration: 12% PIDS Obscur: Fluid: Water

71%

Software: 4.00 6.01 Firmware:

31 Jan 2024

- Kenneth Pye Associates Ltd —

Volume Statistics (Geometric) 2934942.\$ls

Calculations from 0.040 μm to 2000 μm

100% Volume:

Mean: 25.54 µm S.D.: 3.975 27.17 µm 15.80 Median: Variance:

5.820 µm Skewness: -0.743 Left skewed D(3,2): Mean/Median ratio: Kurtosis: 1.690 Leptokurtic 0.940

Mode: 28.70 µm

d₁₀: 5.393 μm d₅₀: 27.17 μm 141.6 µm

Folk and Ward Statistics (Phi)

Median: Mean: 5.16 5.20 Deviation: 1.86

Kurtosis: Skewness: 0.03 1.19

<10% <25% <50% <75% <90% 5.393 µm 12.69 µm 141.6 µm 27.17 µm 58.39 µm

<2000 µm <2 µm <63 µm 4.44% 76.6% 100%

31 Jan 2024

– Kenneth Pye Associates Ltd ––––

2934942.\$ls						
Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume	
Diameter (Lower)	Volume	Volume	Diameter (Lower)	Volume	Volume	
5.110 5.610 6.158 6.760 7.421 8.147 8.943	0.96 1.08 1.21 1.35 1.50 1.66	9.46 10.4 11.5 12.7 14.1 15.6 17.2	1512 1660 1822 2000	0 0 0	100 100 100 100	
9.817 10.78	2.00 2.19	19.0 21.1				

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. Unit 9, Langlands Place, East Kilbride, G75 0YF

e: acowe@sl rconsultin g.com jwelsh@sl rconsultin g.com **t:** 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

19/03/2024

Analytical Report Number: 24-005368

Replaces Analytical Report Number: 24-005368, issue no. 2 Additional analysis undertaken.

Project / Site name: Kintore Hydrogen Plant Samples received on: 23/02/2024

Your job number: 428.012991.00001 Samples instructed on/ 23/02/2024 Analysis started on:

Your order number: 008598-405 Analysis completed by: 19

Report Issue Number: 3 Report issued on: 20/03/2024

Samples Analysed: 1 water sample

Signed:

Alyssa Brown Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

4041

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 008598-405

Lab Sample Number	127663			
Sample Reference	SW01			
Sample Number		None Supplied		
Depth (m)	None Supplied			
Date Sampled	22/02/2024			
Time Taken	1305			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

Turbidity	NTU	1	NONE	< 1.0
Sulphate as SO4	mg/l	0.045	ISO 17025	10.1
Chloride	mg/l	0.15	ISO 17025	20
Silicon (total)	μg/l	50	NONE	2400
Fluoride	μg/l	50	ISO 17025	62
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	61
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.57
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.85
Nitrate as N	mg/l	0.01	ISO 17025	3.19
Nitrate as NO3	mg/l	0.05	ISO 17025	14.1
Nitrite as N	μg/l	1	ISO 17025	7.5
Nitrite as NO2	μg/l	5	ISO 17025	25
Alkalinity as CaCO3 (titration)	mgCaCO 3/I	3	NONE	28
Alkalinity as CaCO3	mgCaCO 3/I	3	ISO 17025	22
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	6.7
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	3.2
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	5
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	130
Hardness - Total	mgCaCO 3/I	1	ISO 17025	56.8
Bicarbonate as HCO3 (titration)	mgHCO3 /I	10	NONE	34
Carbonate as CaCO3 (titration)	mgCaCO 3/I	10	NONE	< 10
Bicarbonate Alkalinity (as CaCO3)	mgCaCO 3/I	3	NONE	26
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0
Bromide	mg/l	0.002	ISO 17025	0.055
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002
pH	pH Units	N/A	ISO 17025	6.9

Heavy Metals / Metalloids

Electrical Conductivity

neavy metals / metallolus				
Aluminium (dissolved)	μg/l	1	ISO 17025	18
Aluminium (total)	μg/l	1	ISO 17025	58
Antimony (dissolved)	μg/l	0.4	ISO 17025	0.8
Antimony (total)	μg/l	0.4	ISO 17025	0.8
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.2
Arsenic (total)	μg/l	0.15	ISO 17025	0.24
Barium (dissolved)	μg/l	0.06	ISO 17025	32
Barium (total)	μg/l	0.06	ISO 17025	34
Cadmium (total)	μg/l	0.02	ISO 17025	< 0.02
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.6
Chromium (total)	μg/l	0.2	ISO 17025	0.8
Copper (dissolved)	μg/l	0.5	ISO 17025	2.3
Copper (total)	μg/l	0.5	ISO 17025	10
Manganese (dissolved)	μg/l	0.05	ISO 17025	13
Manganese (total)	μg/l	0.05	ISO 17025	33
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.19

μS/cm

10

ISO 17025

177

Your Order No: 008598-405

Your Order No: 008598-405				
Lab Sample Number	127663			
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				22/02/2024
Time Taken				1305
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Molybdenum (total)	μg/l	0.05	ISO 17025	0.19
Nickel (dissolved)	μg/l	0.5	ISO 17025	1
Nickel (total)	μg/l	0.5	ISO 17025	1.8
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Silicon (dissolved)	μg/l	50	NONE	6100
Tin (dissolved)	μg/l	0.2	ISO 17025	0.33
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.7
Zinc (total)	μg/l	0.5	ISO 17025	4
Boron (dissolved)	μg/l	10	ISO 17025	11
Boron (total)	μg/l	10	ISO 17025	13
Calcium (dissolved)	mg/l	0.012	ISO 17025	15
Calcium (total)	mg/l	0.012	ISO 17025	15
Iron (dissolved)	mg/l	0.004	ISO 17025	0.06
Iron (total)	mg/l	0.004	ISO 17025	0.21
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.9
Magnesium (total)	mg/l	0.005	ISO 17025	5
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.5
Potassium (total)	mg/l	0.025	ISO 17025	1.8
Sodium (dissolved)	mg/l	0.01	ISO 17025	14
Sodium (total)	mg/l	0.01	ISO 17025	15
Tin (total)	μg/l	1	ISO 17025	< 1.0

Subcontracted Analysis

PSD Laser Diffraction (Subcontracted)	N/A	NONE	See Attached

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	tical Test Name Analytical Method Description Analytical Method Reference		Method number	Wet / Dry Analysis	Accreditation Status
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry	In-house method based on BSEN 15216:2007	L004B	W	ISO 17025
Suspended Solids in water	Determined gravimetrically with GFC filtration papers	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004B	w	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Bromate in water by IC	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	ISO 17025
Exotic metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	NONE
Exotic metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	NONE
Alkalinity in water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025	W	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW PW, GW	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Total organic carbon in water	Determination of total organic carbon in water by TOC/DOC NDIR analyser.Accredited matrices: SW PW GW	In-house method based on Examination of Water ces: SW PW GW and Wastewater 20th Edition: Clesceri, Greenberg & Eaton		W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices: SW, GW, PW, PrW (Al, Cu, Fe,Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW, PW, GW, PrW (AI, Fe, Cu, Zn)		L039B	w	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045B	w	ISO 17025
Chemical Oxygen Demand in water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065	w	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	cal Test Name Analytical Method Description Analytical Method Reference		Method number	Wet / Dry Analysis	Accreditation Status
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/L082B	W	NONE
Alkalinity in water (by discreet analyser)	Determination of Alkalinity by discrete analyser (colorimetry). Accredited matrices: SW, PW, GW	In-house method based on MEWAM & USEPA Method 310.2	L082B	W	ISO 17025
Chloride in water	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW	L082B	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples	In-house method based on Standard Method 8237	L083B	W	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Subcontracted analysis (water)	Subcontracted analysis - see attached subcon report.	Subcontracted analysis - see attached subcon report.			NONE
EK pH at 20°C in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method	L005B	W	ISO 17025
EK Electrical conductivity at 20°C of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031B	W	ISO 17025

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 24-005368 Project / Site name: Kintore Hydrogen Plant

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

	Other ID	Sample		Sample Deviation	·	Test Ref	Test Deviation
SW01	None Supplied	W	127663	С	pH in water	L005B	С
SW01	None Supplied	W	127663	С	EK Electrical conductivity at 20°C of water	L031B	c

Beckman Coulter LS Particle Size Analyzer

4 Mar 2024

Kenneth Pye Associates Ltd -

File name: C:\LS13320\Analyses\i2 Analytical\04-03-2024 24-005368\127663.\$ls

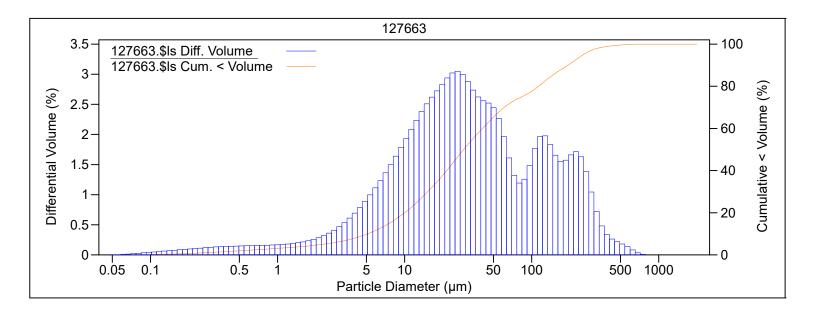
127663.\$ls

File ID: 127663
Sample ID: 127663
Operator: sjb
Run number: 6699
Comment 1: 24-005368

Comment 2: SW01 Sampled 22/02/2024
Optical model: NMBAQC.rf780d PIDS included

Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.65%


LS 13 320 Universal Liquid Module

Start time: 13:15 4 Mar 2024 Run length: 51 seconds

Pump speed: 50%
Obscuration: 3%
Fluid: Water
Software: 6.01

PIDS Obscur: 35%

Firmware: 4.00

4 Mar 2024

Kenneth Pye Associates Ltd —

Volume Statistics (Geometric) 127663.\$ls

Calculations from 0.040 μm to 2000 μm

Volume: 100%

D(3,2): 5.682 µm Skewness: -0.689 Left skewed Mean/Median ratio: 0.977 Kurtosis: 1.067 Leptokurtic

Mode: 26.14 μm

 d_{10} : 5.123 μm d_{50} : 29.24 μm d_{90} : 193.1 μm

Folk and Ward Statistics (Phi)

Mean: 4.97 Median: 5.10 Deviation: 2.05

Skewness: -0.00 Kurtosis: 1.02

<10% <25% <50% <75% <90% 5.123 μ m 12.55 μ m 29.24 μ m 83.63 μ m 193.1 μ m

 $^{\mbox{<}2~\mbox{$\mu m$}}$ $^{\mbox{<}63~\mbox{$\mu m$}}$ $^{\mbox{<}2000~\mbox{$\mu m$}}$ $^{\mbox{<}2000~\mbox{$\mu m$}}$

127663.\$ls					
Particle	Volume	Particle	Volume		
Diameter	%	Diameter	용		
μm		μm			
0.043	0.0024	31.25	5.14		
0.051	0.0083	37.16	4.81		
0.061	0.027	44.19	4.63		
0.073	0.046	52.56	4.12		
0.086	0.076	63	2.80		
0.103	0.096	75	2.40		
0.122	0.12	90	2.68		
0.145	0.15	106	3.38		
0.173	0.17	125	3.65		
0.205	0.20	150	3.12		
0.244	0.22	180	2.85		
0.29	0.24	212	2.95		
0.345	0.26	250	2.56		
0.411	0.27	300	1.30		
0.488	0.28	355	0.70		
0.581	0.29	425	0.41		
0.691	0.29	500	0.30		
0.821	0.30	600	0.11		
0.977	0.32	710	0.012		
1.161	0.34	850	0.00013		
1.381	0.38	1000	0		
1.642	0.45	1180	0		
1.953 2.323	0.54 0.67	1400 1700	0		
2.323	0.85	2000	U		
3.285	1.09	2000			
3.906	1.38				
4.645	1.73				
5.524	2.13				
6.57	2.56				
7.813	3.04				
9.291	3.55				
11.05	4.07				
13.14	4.57				
15.63	4.93				
18.58	5.31				
22.1	5.60				
26.28	5.54				

4 Mar 2024

Kenneth Pye Associates Ltd

127663.\$ls						
Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	
1 '	0.00082 0.0011 0.0018 0.0036 0.0076 0.014 0.021 0.028 0.034 0.042 0.049 0.056 0.063 0.070 0.077 0.084 0.091 0.11 0.12 0.13 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.16 0.17 0.17 0.18 0.19 0.22 0.22 0.23 0.26 0.29 0.32 0.32 0.41 0.47 0.19 0.19 0.19 0.19 0.19 0.10 0.10 0.11 0.15 0.15 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.19 0.20 0.22 0.22 0.23 0.26 0.29 0.32 0.36 0.41 0.47 0.54 0.61 0.69 0.79 0.89 1.00 1.11 1.23 1.36 1.47 0.54 0.61 0.69 0.79 0.89 1.00 1.11 1.23 1.36 1.47 0.54 0.61 0.69 0.79 0.89 1.00 1.11 1.23 1.36 1.47 0.17 0.18 0.19 0.20 0.22 0.23 0.26 0.29 0.32 0.36 0.41 0.47 0.54 0.61 0.69 0.79 0.89 1.00 1.11 1.23 1.36 1.64 1.78 1.93	0 0.00082 0.0019 0.0037 0.0073 0.015 0.029 0.050 0.078 0.11 0.15 0.20 0.26 0.32 0.39 0.47 0.55 0.64 0.74 0.85 0.96 1.08 1.21 1.34 1.47 1.61 1.76 1.91 2.06 2.21 2.36 2.52 2.68 2.84 3.00 3.17 3.34 3.52 3.71 3.14 3.52 3.71 3.91 4.12 4.36 4.62 4.90 5.22 5.58 5.99 6.46 6.99 7.60 8.30 9.99 9.98 11.0 12.1 13.3 14.7 1.61 1.76 1.91 2.06 2.21 2.36 2.52 2.58 3.71 3.91 4.12 4.36 4.62 4.90 5.22 5.58 5.99 6.46 6.99 7.60 8.30 9.09 9.98 11.0 12.1 13.3 14.7 1.61 1.76 1.91 2.17 3.91 4.12 4.36 4.62 4.90 5.22 5.58 5.99 6.46 6.99 7.60 8.30 9.99 9.98 11.0 12.1 13.3 14.7 16.2 17.8 19.9 19		2.24 2.38 2.51 2.62 2.72 2.83 2.94 3.02 3.05 3.00 2.88 2.74 2.62 2.56 2.52 2.45 2.26 1.96 1.61 1.32 1.19 1.26 1.48 1.77 1.96 1.98 1.83 1.66 1.55 1.57 1.63 1.71 1.63 1.38 1.05 0.72 0.48 0.34 0.26 0.22 0.18 0.14 0.082 0.035 0.074 0.00071	23.6 25.9 28.2 30.7 33.4 36.1 38.9 41.9 50.9 53.8 56.5 59.2 61.7 64.2 66.7 69.0 70.9 72.5 81.5 83.5 87.0 76.3 77.8 79.5 81.5 83.5 99.1 99.9 99.9 99.9 99.9 99.9 99.9 99	
10.78	2.08	21.5				

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. Unit 9, Langlands Place, East Kilbride, G75 0YF

e: acowe@sl rconsultin g.com jwelsh@sl rconsultin g.com **t:** 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

Analytical Report Number: 24-010628

Replaces Analytical Report Number: 24-010628, issue no. 1

Project / Site name: Kintore Hydrogen Plant **Samples received on:** 22/03/2024

Your job number: 428.012991.00001 Samples instructed on/ 22/03/2024 Analysis started on:

Your order number: 008602-405 Analysis completed by: 23/04/2024

Report Issue Number: 2 Report issued on: 23/04/2024

Samples Analysed: 1 water sample

Signed:

Nicola Jupp

Senior Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

4041

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 008602-405

Lab Sample Number				152668
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)	None Supplied			
Date Sampled	21/03/2024			
Time Taken	1200			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

Turbidity	NTU	1	NONE	< 1.0
Sulphate as SO4	mg/l	0.045	ISO 17025	8.43
Chloride	mg/l	0.15	ISO 17025	21
Silicon (total)	μg/l	50	NONE	7200
Fluoride	μg/l	50	ISO 17025	69
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	58
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.67
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	3.02
Nitrate as N	mg/l	0.01	ISO 17025	3.17
Nitrate as NO3	mg/l	0.05	ISO 17025	14.1
Nitrite as N	μg/l	1	ISO 17025	17
Nitrite as NO2	μg/l	5	ISO 17025	55
Alkalinity as CaCO3 (titration)	mgCaCO 3/I	3	NONE	29
Alkalinity as CaCO3	mgCaCO 3/I	3	ISO 17025	25
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	12
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	3.2
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	< 2.0
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	150
Hardness - Total	mgCaCO 3/I	1	ISO 17025	55.2
Bicarbonate as HCO3	mgHCO3 /I	10	NONE	30
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0
Bromide	mg/l	0.002	ISO 17025	< 0.002
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

pH	pH Units	N/A	ISO 17025	7.2
Electrical Conductivity	μS/cm	10	ISO 17025	173

Heavy Metals / Metalloids

μg/l	1	ISO 17025	13
μg/l	1	ISO 17025	52
μg/l	0.4	ISO 17025	< 0.4
μg/l	0.4	ISO 17025	< 0.4
μg/l	0.15	ISO 17025	0.21
μg/l	0.15	ISO 17025	0.26
μg/l	0.06	ISO 17025	34
μg/l	0.06	ISO 17025	34
μg/l	0.02	ISO 17025	< 0.02
μg/l	0.02	ISO 17025	< 0.02
μg/l	0.2	ISO 17025	0.7
μg/l	0.2	ISO 17025	0.8
μg/l	0.5	ISO 17025	2.4
μg/l	0.5	ISO 17025	11
μg/l	0.05	ISO 17025	7.3
μg/l	0.05	ISO 17025	23
μg/l	0.05	ISO 17025	0.25
μg/l	0.05	ISO 17025	0.53
μg/l	0.5	ISO 17025	0.9
μg/l	0.5	ISO 17025	1.1
	hall hall hall hall hall hall hall hall	ру/I 1 ру/I 0.4 ру/I 0.4 ру/I 0.4 ру/I 0.15 ру/I 0.15 ру/I 0.06 ру/I 0.06 ру/I 0.02 ру/I 0.02 ру/I 0.2 ру/I 0.2 ру/I 0.5 ру/I 0.5 ру/I 0.5 ру/I 0.5 ру/I 0.5 ру/I 0.05 ру/I 0.05 ру/I 0.05 ру/I 0.05 ру/I 0.05	µg/l 1 ISO 17025 µg/l 0.4 ISO 17025 µg/l 0.4 ISO 17025 µg/l 0.4 ISO 17025 µg/l 0.15 ISO 17025 µg/l 0.15 ISO 17025 µg/l 0.06 ISO 17025 µg/l 0.06 ISO 17025 µg/l 0.02 ISO 17025 µg/l 0.02 ISO 17025 µg/l 0.2 ISO 17025 µg/l 0.2 ISO 17025 µg/l 0.5 ISO 17025 µg/l 0.5 ISO 17025 µg/l 0.05 ISO 17025 µg/l 0.5 ISO 17025

Your Order No: 008602-405

Lab Sample Number				152668
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled	21/03/2024			
Time Taken	1200			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Silicon (dissolved)	μg/l	50	NONE	1400
Tin (dissolved)	μg/l	0.2	ISO 17025	0.27
Tin (total)	μg/l	0.2	ISO 17025	1.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	4.8
Zinc (total)	μg/l	0.5	ISO 17025	9.1
Boron (dissolved)	μg/l	10	ISO 17025	< 10
Boron (total)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	14
Calcium (total)	μg/l	12	ISO 17025	15000
Iron (dissolved)	mg/l	0.004	ISO 17025	0.042
Iron (total)	mg/l	0.004	ISO 17025	0.26
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.7
Magnesium (total)	mg/l	0.005	ISO 17025	5
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.2
Potassium (total)	mg/l	0.025	ISO 17025	2
Sodium (dissolved)	mg/l	0.01	ISO 17025	11
Sodium (total)	mg/l	0.01	ISO 17025	14

Subcontracted Analysis

PSD Laser Diffraction (Subcontracted)	N/A	NONE	See Attached

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry	In-house method based on BSEN 15216:2007	L004B	W	ISO 17025
Suspended Solids in water	Determined gravimetrically with GFC filtration papers	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004B	W	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Bromate in water by IC	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	ISO 17025
Exotic metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	NONE
Exotic metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	NONE
Alkalinity in water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025	W	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW PW, GW	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Total organic carbon in water	Determination of total organic carbon in water by TOC/DOC NDIR analyser.Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices: SW, GW, PW, PrW (Al, Cu, Fe,Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW, PW, GW, PrW (Al, Fe, Cu, Zn)		L039B	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045B	W	ISO 17025
Chemical Oxygen Demand in water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/L082B	W	NONE
Alkalinity in water (by discreet analyser)	Determination of Alkalinity by discrete analyser (colorimetry). Accredited matrices: SW,PW, GW,FSE,LL	In-house method based on MEWAM & USEPA Method 310.2	L082B	W	ISO 17025
Bicarbonate as HCO3 in water	Determination of Bicarbonate by discrete analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	NONE
Chloride in water	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW,PW, GW,FSE,LL	L082B	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples	In-house method based on Standard Method 8237	L083B	W	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW, LL	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Subcontracted analysis (water)	Subcontracted analysis - see attached subcon report.	Subcontracted analysis - see attached subcon report.			NONE
EK pH at 20°C in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW, [LL]	In-house method	L005F	W	ISO 17025
EK Electrical conductivity at 20°C of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031F	W	ISO 17025

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Beckman Coulter LS Particle Size Analyzer

8 Apr 2024

Kenneth Pye Associates Ltd -

File name: C:\LS13320\Analyses\i2 Analytical\08-04-2024 24-010628\152668.\$ls

152668.\$ls

 File ID:
 152668

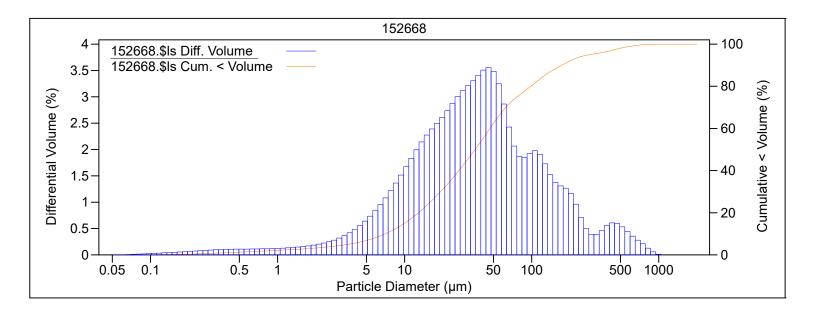
 Sample ID:
 152668

 Operator:
 sjb

 Run number:
 7074

Comment 1: Job No: 24-010628

Comment 2: SW01 Kintire 21/03/2024 12:00 Optical model: NMBAQC.rf780d PIDS included


Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.44%

LS 13 320 Universal Liquid Module

Start time: 10:31 8 Apr 2024 Run length: 52 seconds

Pump speed: 50%
Obscuration: 9% PIDS Obscur: 42%
Fluid: Water
Software: 6.01 Firmware: 4.00

8 Apr 2024

Kenneth Pye Associates Ltd —

Volume Statistics (Geometric) 152668.\$ls

Calculations from 0.040 μm to 2000 μm

Volume: 100%

D(3,2): 7.843 µm Skewness: -0.658 Left skewed Mean/Median ratio: 0.932 Kurtosis: 1.678 Leptokurtic

Mode: 45.75 μm

 d_{10} : 7.045 μm d_{50} : 35.88 μm d_{90} : 172.3 μm

Folk and Ward Statistics (Phi)

Mean: 4.81 Median: 4.80 Deviation: 1.83

Skewness: 0.03 Kurtosis: 1.14

<2 μm <63 μm <2000 μm 3.26% 70.2% 100%

152668.\$ls					
Particle	Volume	Particle	Volume		
Diameter	%	Diameter	ે		
μm		μm			
0.043	0.0012	31.25	6.11		
0.051	0.0042	37.16	6.46		
0.061	0.014	44.19	6.56		
0.073	0.025	52.56	5.95		
0.086	0.042	63	4.27		
0.103	0.056	75	3.68		
0.122	0.074	90	3.38		
0.145	0.094	106	3.37		
0.173	0.11	125	3.09		
0.205	0.13	150	2.60		
0.244	0.16	180	2.13		
0.29	0.18	212	1.53		
0.345	0.19	250	0.97		
0.411	0.20	300	0.74		
0.488	0.20	355	1.04		
0.581	0.21	425	1.04		
0.691	0.21	500	0.93		
0.821	0.22	600	0.57		
0.977	0.23	710	0.34		
1.161	0.25	850	0.087		
1.381	0.28	1000	0.0065		
1.642	0.32	1180	0		
1.953	0.38	1400	0		
2.323	0.46	1700	0		
2.762	0.58	2000			
3.285 3.906	0.74 0.97				
4.645	1.26				
5.524	1.62				
6.57	2.04				
7.813	2.53				
9.291	3.06				
11.05	3.61				
13.14	4.13				
15.63	4.50				
18.58	4.91				
22.1	5.36				
26.28	5.77				

8 Apr 2024

-Kenneth Pye Associates Ltd -----

152668.\$ls						
Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	
0.040 0.044 0.048 0.053 0.058 0.064 0.070 0.077 0.084 0.093 0.102 0.112 0.122 0.134 0.148 0.162 0.178 0.195 0.214 0.235 0.258 0.284 0.311 0.342 0.452 0.496 0.545 0.545 0.598 0.656 0.721 0.791 0.868 0.953 1.047 1.149 1.261 1.385 1.520 1.668 1.832 2.011 2.07 2.423 2.660 2.920 3.205 3.519 3.863 4.240 4.655 5.110 5.610 6.158 6.760 7.421 8.147	0.00042 0.00056 0.00092 0.0019 0.0039 0.0072 0.011 0.015 0.019 0.023 0.028 0.033 0.048 0.043 0.048 0.054 0.060 0.066 0.072 0.072 0.079 0.085 0.091 0.096 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.1	0 0.00042 0.00098 0.0019 0.0038 0.0076 0.015 0.026 0.041 0.060 0.083 0.11 0.14 0.18 0.23 0.27 0.33 0.39 0.45 0.53 0.61 0.69 0.78 0.88 0.98 1.08 1.19 1.29 1.40 1.51 1.63 1.74 1.85 1.97 2.09 2.21 2.33 2.47 2.61 2.75 2.91 3.08 3.27 3.69 3.94 4.22 4.54 4.91 5.32 5.80 6.36 7.00 7.74 8.58 9.53 10.6 11.8 1.91 1.91 1.91 1.91 1.97 2.09 2.21 2.33 2.47 2.61 2.75 2.91 3.08 3.27 3.69 3.94 4.22 4.54 4.91 5.32 5.80 6.36 7.00 7.74 8.58 9.53 10.6 11.8	11.83 12.99 14.26 15.65 17.18 18.86 20.70 22.73 24.95 27.39 30.07 33.01 36.24 39.78 43.67 47.94 52.62 57.77 63.41 69.61 76.42 83.89 92.09 101.1 111.0 121.8 133.7 146.8 161.2 176.9 194.2 213.2 2234.1 256.9 282.1 309.6 339.9 373.1 409.6 449.7 493.6 541.9 594.9 653.0 716.8 786.9 863.9	0.44 0.35 0.28 0.21 0.13 0.057 0.012	18.2 20.2 22.4 24.6 27.0 29.5 32.1 34.9 37.7 40.7 43.9 47.1 50.4 53.8 57.3 60.8 64.3 67.6 70.4 72.9 74.9 76.8 78.6 82.5 84.4 86.2 87.7 89.1 90.4 91.6 92.8 93.8 94.5 95.0 95.4 95.0 95.4 95.0 95.4 95.0 97.4 99.9 99.9 99.9 99.9 99.9 99.9 99.9	

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH

e: acowe@slrconsulting.com

i2 Analytical Ltd. Unit 9, Langlands Place, East Kilbride, G75 0YF

t: 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

18/04/2024

Analytical Report Number: 24-015122

Replaces Analytical Report Number: 24-015122, issue no. 1 Additional analysis undertaken.

Project / Site name: Kintore Hydrogen Plant Samples received on: 18/04/2024

Your job number: 428.012991.00001 Samples instructed on/

Analysis started on:

Your order number: 00974-405 Analysis completed by: 02/05/2024

Report Issue Number: 2 **Report issued on:** 08/05/2024

Samples Analysed: 1 water sample

Signed:

Nicola Jupp

Senior Customer Service Advisor
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 00974-405

Lab Sample Number	175582			
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	17/04/2024			
Time Taken	0820			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

General Inorganics				
Turbidity	NTU	1	NONE	6
Sulphate as SO4	mg/l	0.045	ISO 17025	7.52
Chloride	mg/l	0.15	ISO 17025	18
Silicon (total)	μg/l	50	NONE	6500
Fluoride	μg/l	50	ISO 17025	< 50
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	4900
Ammoniacal Nitrogen as NH3	μg/l	15	ISO 17025	6000
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	6300
Ammoniacal Nitrogen as NH4	mg/l	0.015	ISO 17025	6.3
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	3.89
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	4
Nitrate as N	mg/l	0.01	ISO 17025	2.19
Nitrate as NO3	mg/l	0.05	ISO 17025	9.69
Nitrite as N	μg/l	1	ISO 17025	6.3
Nitrite as NO2	μg/l	5	ISO 17025	21
Alkalinity as CaCO3 (titration)	mgCaCO 3/I	3	NONE	35
Alkalinity as CaCO3	mgCaCO 3/I	3	ISO 17025	29
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	14
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.2
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	9
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	14
Hardness - Total	mgCaCO 3/I	1	ISO 17025	48.1
Bicarbonate as HCO3	mgHCO3 /I	10	NONE	36
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0
Bromide	mg/l	0.002	ISO 17025	0.035
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002
рН	pH Units	N/A	ISO 17025	7.5
Electrical Conductivity	μS/cm	10	ISO 17025	147
•				

Heavy Metals / Metalloids

neavy metals / metallolus				
Aluminium (dissolved)	μg/l	1	ISO 17025	15
Aluminium (total)	μg/l	1	ISO 17025	43
Antimony (dissolved)	μg/l	0.4	ISO 17025	0.4
Antimony (total)	μg/l	0.4	ISO 17025	0.9
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.19
Arsenic (total)	μg/l	0.15	ISO 17025	0.26
Barium (dissolved)	μg/l	0.06	ISO 17025	26
Barium (total)	μg/l	0.06	ISO 17025	28
Cadmium (total)	μg/l	0.02	ISO 17025	0.02
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.4
Chromium (total)	μg/l	0.2	ISO 17025	0.8
Copper (dissolved)	μg/l	0.5	ISO 17025	4.2
Copper (total)	μg/l	0.5	ISO 17025	7.9
Manganese (dissolved)	μg/l	0.05	ISO 17025	4.8
Manganese (total)	μg/l	0.05	ISO 17025	17
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.22

Your Order No: 00974-405

Lab Sample Number	175582						
Sample Reference	SW01						
Sample Number				None Supplied			
Depth (m)				None Supplied			
Date Sampled	Date Sampled						
Time Taken	0820						
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Molybdenum (total)	μg/l	0.05	ISO 17025	0.35			
Nickel (dissolved)	μg/l	0.5	ISO 17025	1			
Nickel (total)	μg/l	0.5	ISO 17025	1.5			
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6			
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6			
Tin (dissolved)	μg/l	0.2	ISO 17025	< 0.20			
Tin (total)	μg/l	0.2	ISO 17025	0.82			
Zinc (dissolved)	μg/l	0.5	ISO 17025	7.4			
Zinc (total)	μg/l	0.5	ISO 17025	23			
Boron (dissolved)	μg/l	10	ISO 17025	< 10			
Boron (total)	μg/l	10	ISO 17025	< 10			
Calcium (dissolved)	mg/l	0.012	ISO 17025	12			
Calcium (total)	μg/l	12	ISO 17025	14000			
Iron (dissolved)	mg/l	0.004	ISO 17025	0.04			
Iron (total)	mg/l	0.004	ISO 17025	0.3			
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.1			
Magnesium (total)	mg/l	0.005	ISO 17025	4.7			
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.2			
Potassium (total)	mg/l	0.025	ISO 17025	1.3			
Sodium (dissolved)	mg/l	0.01	ISO 17025	11			
Sodium (total)	mg/l	0.01	ISO 17025	13			

Subcontracted Analysis

PSD Laser Diffraction (Subcontracted)		N/A	NONE	See Attached			

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry	In-house method based on BSEN 15216:2007	L004B	W	ISO 17025
Suspended Solids in water	Determined gravimetrically with GFC filtration papers	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004B	w	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Bromate in water by IC	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	ISO 17025
Exotic metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	NONE
Alkalinity in water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025	W	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW PW, GW	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Total organic carbon in water	Determination of total organic carbon in water by TOC/DOC NDIR analyser.Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Metals in water by ICP-OES (dissolved)		In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW, PW, GW, PrW (AI, Fe, Cu, Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045B	w	ISO 17025
Chemical Oxygen Demand in water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065	w	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	w	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	ical Test Name Analytical Method Description Analytical Method Reference			Wet / Dry Analysis	Accreditation Status
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/L082B	W	NONE
Alkalinity in water (by discreet analyser)	Determination of Alkalinity by discrete analyser (colorimetry). Accredited matrices: SW,PW, GW,FSE,LL	In-house method based on MEWAM & USEPA Method 310.2	L082B	W	ISO 17025
Bicarbonate as HCO3 in water	Determination of Bicarbonate by discrete analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	NONE
Chloride in water	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW,PW, GW,FSE,LL	L082B	W	ISO 17025
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.			W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples	In-house method based on Standard Method 8237	L083B	W	NONE
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW, FSE, LL	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by addification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW, LL	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Subcontracted analysis (water)	Subcontracted analysis - see attached subcon report.	Subcontracted analysis - see attached subcon report.			NONE
EK pH at 20°C in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW, [LL]	In-house method	L005F	W	ISO 17025
EK Electrical conductivity at 20°C of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031F	W	ISO 17025

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	1
--	-----------------------------	------------------	-----------------------	-------------------------	---

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

30 Apr 2024

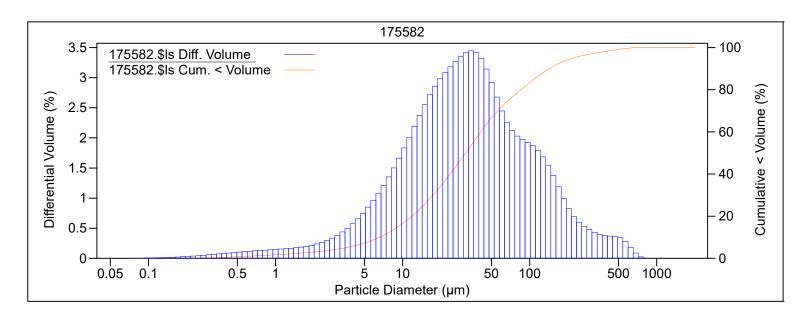
Kenneth Pye Associates Ltd —

File name: C:\LS13320\Analyses\i2 Analytical\30-04-2024 24-015122\175582.\$ls

175582.\$ls

File ID: 175582 175582 Sample ID: Operator: sjb Run number: 7156

Comment 1: Job No: 24-015122


Comment 2: SW01 Kintore 17/04/2024 08:20 Fraunhofer.rf780d PIDS included Optical model:

Residual: 0.23%

LS 13 320 Universal Liquid Module

8:03 30 Apr 2024 Start time: Run length: 51 seconds

Pump speed: 50% Obscuration: 9% PIDS Obscur: 49% Fluid: Water Software: 6.01 4.00 Firmware:

Volume Statistics (Geometric) 175582.\$ls

Calculations from 0.040 μm to 2000 μm

Volume: 100%

Mean: 29.99 µm S.D.: 3.580 Median: 31.39 µm Variance: 12.82

D(3,2): 9.848 µm Skewness: -0.508 Left skewed Mean/Median ratio: Kurtosis: 1.079 Leptokurtic 0.955

Mode: 34.59 µm

d₁₀: 6.576 µm 31.39 µm 143.0 µm

Folk and Ward Statistics (Phi)

4.98 Median: 4.99 Deviation: Mean: 1.75

Skewness: 0.02 Kurtosis: 1.09

<10% <25% <50% <75% <90% 6.576 µm 14.55 µm 31.39 µm 68.22 µm 143.0 µm

<2 µm <63 µm <2000 µm 2.99% 73.1% 100%

30 Apr 2024

-Kenneth Pye Associates Ltd -----

Particle Volume
um um 0.043 0.00086 0.051 0.00038 0.061 0.00038 0.061 0.00038 0.061 0.00039 0.086 0.0077 0.103 0.013 0.102 0.022 0.145 0.034 0.173 0.047 0.205 0.068 0.244 0.091 0.29 0.12 0.345 0.15 0.418 0.17 0.488 0.22 0.988 0.22 0.988 0.22 0.997 0.28 0.991 0.22 0.991 0.22 0.997 0.28 1.161 0.30 1.381 0.33 1.642 0.38 1.953 0.45 2.323 0.55 2.762 0.70 3.285 0.89 3.906 1.15 4.665 1.47 5.524 1.85 6.517 2.28 7.131 2.307 1.104 4.60 1.5.63 5.13 18.58 5.99 2.2.1 5.92 26.28 6.21 31.25 6.38 37.16 6.23 44.19 5.64 52.56 4.99 425 0.84
0.043
600 0.25 710 0.036 850 0.00069

30 Apr 2024

-Kenneth Pye Associates Ltd -----

175582.\$ls						
Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	
1 ' '	0.000017 0.000035 0.000080 0.00018 0.00034 0.0012 0.0019 0.0030 0.0044 0.0062 0.0084 0.011 0.017 0.021 0.025 0.031 0.036 0.043 0.050 0.058 0.066 0.073 0.081 0.089 0.096 0.10 0.11 0.12 0.12 0.13 0.14 0.15 0.15 0.16 0.17 0.18 0.19 0.20 0.22 0.24 0.26 0.30 0.34 0.19 0.20 0.22 0.24 0.26 0.30 0.34 0.15 0.15 0.15 0.16 0.17 0.18 0.19 0.20 0.22 0.24 0.26 0.30 0.34 0.38 0.44 0.50 0.57 0.66 0.75 0.16 0.17 0.18 0.19 0.20 0.22 0.24 0.26 0.30 0.34 0.38 0.44 0.50 0.57 0.66 0.75 0.66 0.75 0.15 0.16 0.17 0.18 0.19 0.20 0.22 0.24 0.26 0.30 0.34 0.38 0.44 0.50 0.57 0.66 0.75 0.66 0.75 0.75 0.85 0.96 0.96 0.10 0.15 0.15 0.16 0.17 0.18 0.19 0.20 0.22 0.24 0.26 0.30 0.57 0.66 0.75 0.85 0.96 0.75 0.85 0.96 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96	0 0.000017 0.000052 0.00013 0.00065 0.0013 0.0024 0.0044 0.0074 0.012 0.018 0.026 0.037 0.051 0.068 0.089 0.11 0.14 0.18 0.22 0.27 0.33 0.40 0.47 0.55 0.64 0.74 0.84 0.95 1.07 1.19 1.32 1.46 1.60 1.75 1.90 2.06 2.23 2.40 2.59 2.79 3.01 3.24 3.51 3.81 4.14 4.53 4.96 6.04 6.05 7.44 8.29 9.25 10.3 11.5 12.9		2.19 2.38 2.55 2.71 2.86 2.98 3.09 3.18 3.27 3.35 3.42 3.45 3.42 3.45 3.42 2.26 2.12 2.03 1.97 1.93 1.87 1.79 1.69 1.55 1.38 1.19 1.00 0.83 0.69 0.60 0.53 0.48 0.43 0.39 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	19.9 22.1 24.5 27.0 29.7 32.6 35.6 38.7 41.8 45.1 51.9 55.3 77.6 79.7 81.6 83.6 77.6 79.7 81.6 83.0 94.8 99.1 97.1 97.6 98.3 98.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9	
8.944 9.819 10.78	1.66 1.83 2.01	14.4 16.1 17.9				

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. 40 Carron PI, East Kilbride, Glasgow G75 0YL

t: 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

e: acowe@slrconsulting.com

Samples Analysed:

Analytical Report Number: 24-004782

 Project / Site name:
 Kintore H2
 Samples received on:
 22/02/2024

 Your job number:
 Samples instructed on/Analysis started on:
 22/02/2024

 Your order number:
 Analysis completed by:
 23/02/2024

 Report Issue Number:
 1
 Report issued on:
 23/02/2024

Signed:

Kimberley Macmaster Laboratory Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

12 water samples

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-004782 Project / Site name: Kintore H2

Lab Sample Number				124908	124909	124910	124911	124912		
Sample Reference		2503511 SW01	2524262 SW01	2560146 SW01	2612431 SW01	2678453 SW01				
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied					
Depth (m)				None Supplied						
Date Sampled				16/11/2022	05/12/2022	17/01/2023	09/03/2023	11/05/2023		
Time Taken				None Supplied						
Analytical Parameter (Water Analysis)		Limit of detection	Accreditation Status							
General Inorganics										
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		

Analytical Report Number: 24-004782 Project / Site name: Kintore H2

Lab Sample Number				124913	124914	124915	124916	124917
Sample Reference	Sample Reference					2805854 SW01	2842852 SW01	2882797 SW01
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				None Supplied				
Date Sampled				06/07/2023	01/08/2023	07/09/2023	11/10/2023	16/11/2023
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

Analytical Report Number: 24-004782 Project / Site name: Kintore H2

Lab Sample Number				124918	124919
Sample Reference				2916042 SW01	2934942 SW01
Sample Number				None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied
Date Sampled				18/12/2023	23/01/2024
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		

General Inorganics

0 1 1 11 11 11 11 11 11 11	maCO3/I	2	NONE		
Carbonate Alkalinity as CO3	mgCO3/1	3	NONE	< 3.0	< 3.0
·					

Analytical Report Number : 24-004782 Project / Site name: Kintore H2

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Alkalinity in water (by titration)	, ,	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. Unit 9, Langlands Place, East Kilbride, G75 0YF

e: acowe@sl rconsultin g.com jwelsh@sl rconsultin g.com **t:** 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

Analytical Report Number: 24-021378

Project / Site name:Kintore-Hydrogen PlantSamples received on:23/05/2024

Your job number: 428.012991.00001 Samples instructed on/

Analysis started on:

23/05/2024

Your order number: 009628-405

Analysis completed by: 0-

04/06/2024

Report Issue Number: 1

Report issued on:

04/06/2024

Samples Analysed: 1 water sample

Signed:

Nicola Jupp

Senior Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

4041

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 24-021378 Project / Site name: Kintore-Hydrogen Plant

Your Order No: 009628-405

Lab Sample Number	208887			
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)		None Supplied		
Date Sampled	23/05/2024			
Time Taken	1055			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

Turbidity	NTU	1	NONE	8.6
Sulphate as SO ₄	mg/l	0.045	ISO 17025	8.51
Chloride	mg/l	0.15	ISO 17025	20
Silicon (total)	μg/l	50	NONE	7000
Fluoride	μg/l	50	ISO 17025	57
Ammoniacal Nitrogen as NH ₄ +	μg/l	15	ISO 17025	57
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.54
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.69
Nitrate as N	mg/l	0.01	ISO 17025	2.41
Nitrate as NO ₃	mg/l	0.05	ISO 17025	10.7
Nitrite as N	μg/l	1	ISO 17025	27
Nitrite as NO ₂	μg/l	5	ISO 17025	88
Alkalinity as CaCO ₃ (titration)	mgCaCO 3/I	3	NONE	51
Alkalinity as CaCO ₃	mgCaCO 3/I	3	ISO 17025	43
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	3.6
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.44
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	< 2.0
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	120
Hardness - Total	mgCaCO 3/I	1	ISO 17025	57.8
Bicarbonate as HCO₃	mgHCO3/	10	NONE	52
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0
Bromide	mg/l	0.002	ISO 17025	0.046
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Electrical Conductivity

Heavy Metals / Metalloids				
Aluminium (dissolved)	μg/l	1	ISO 17025	5.7
Aluminium (total)	μg/l	1	ISO 17025	38
Antimony (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Antimony (total)	μg/l	0.4	ISO 17025	< 0.4
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.24
Arsenic (total)	μg/l	0.15	ISO 17025	0.3
Barium (dissolved)	μg/l	0.06	ISO 17025	30
Barium (total)	μg/l	0.06	ISO 17025	30
Cadmium (total)	μg/l	0.02	ISO 17025	< 0.02
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.4
Chromium (total)	μg/l	0.2	ISO 17025	0.4
Copper (dissolved)	μg/l	0.5	ISO 17025	1.3
Copper (total)	μg/l	0.5	ISO 17025	3.4
Manganese (dissolved)	μg/l	0.05	ISO 17025	0.71
Manganese (total)	μg/l	0.05	ISO 17025	1.3
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.31
Molybdenum (total)	μg/l	0.05	ISO 17025	0.32
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.6
Nickel (total)	μg/l	0.5	ISO 17025	1

pH Units μS/cm

10

ISO 17025 ISO 17025

181

Your Order No: 009628-405

Lab Sample Number	208887			
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				23/05/2024
Time Taken	1055			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	0.23
Tin (total)	μg/l	0.2	ISO 17025	0.97
Zinc (dissolved)	μg/l	0.5	ISO 17025	1.6
Zinc (total)	μg/l	0.5	ISO 17025	2.9

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Boron (total)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	15
Calcium (total)	μg/l	12	ISO 17025	16000
Iron (dissolved)	mg/l	0.004	ISO 17025	0.017
Iron (total)	mg/l	0.004	ISO 17025	0.37
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.9
Magnesium (total)	mg/l	0.005	ISO 17025	5.4
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.4
Potassium (total)	mg/l	0.025	ISO 17025	1.4
Sodium (dissolved)	mg/l	0.01	ISO 17025	12
Sodium (total)	mg/l	0.01	ISO 17025	13

Subcontracted Analysis

PSD Laser Diffraction (Subcontracted)	N/A	NONE	See Attached

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	tical Test Name Analytical Method Description Analytical Method Reference		Method number	Wet / Dry Analysis	Accreditation Status
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry	In-house method based on BSEN 15216:2007	L004B	W	ISO 17025
Suspended Solids in water	Determined gravimetrically with GFC filtration papers	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004B	w	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Bromate in water by IC	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	ISO 17025
Exotic metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	NONE
Alkalinity in water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025	W	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW PW, GW	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Total organic carbon in water	Determination of total organic carbon in water by TOC/DOC NDIR analyser.Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices: SW, GW, PW, PrW (Al, Cu, Fe,Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW, PW, GW, PrW (AI, Fe, Cu, Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	w	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045B	w	ISO 17025
Chemical Oxygen Demand in water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/L082B	W	NONE
Alkalinity in water (by discreet analyser)	Determination of Alkalinity by discrete analyser (colorimetry). Accredited matrices: SW,PW, GW,FSE,LL	In-house method based on MEWAM & USEPA Method 310.2	L082B	W	ISO 17025
Bicarbonate as HCO3 in water	Determination of Bicarbonate by discrete analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	NONE
Chloride in water	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW,PW, GW,FSE,LL	L082B	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples	In-house method based on Standard Method 8237	L083B	W	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW, LL	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Subcontracted analysis (water)	Subcontracted analysis - see attached subcon report.	Subcontracted analysis - see attached subcon report.			NONE
EK pH at 20°C in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW, [LL]	In-house method	L005F	W	ISO 17025
EK Electrical conductivity at 20°C of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031F	W	ISO 17025
	•				

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Beckman Coulter LS Particle Size Analyzer

29 May 2024

Kenneth Pye Associates Ltd -

File name: C:\LS13320\Analyses\i2 Analytical\29-05-2024 24-021378\Sample 208887.\$ls

Sample 208887.\$ls

File ID: Sample 208887 Sample ID: Sample 208887

Operator: sjb Run number: 7348

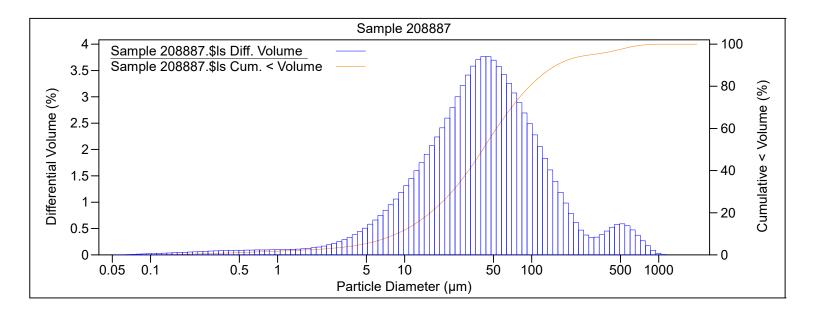
Comment 1: Job No: 24-021378
Comment 2: SW01 Kintyre 23/05/2024
Optical model: NMBAQC.rf780d PIDS included

Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.20%

LS 13 320 Universal Liquid Module

Start time: 14:57 29 May 2024 Run length: 51 seconds


Pump speed: 50%
Obscuration: 11%
Fluid: Water
Software: 6.01

-----g....

62%

Firmware: 4.00

PIDS Obscur:

- Kenneth Pye Associates Ltd -

29 May 2024

Volume Statistics (Geometric) Sample 208887.\$ls

Calculations from 0.040 μm to 2000 μm

100% Volume:

Mean: 37.90 µm S.D.: 3.624 41.22 µm Median: Variance: 13.13

9.265 µm -0.766 Left skewed D(3,2): Skewness: Mean/Median ratio: 2.364 Leptokurtic 0.920 Kurtosis:

Mode: 41.68 µm

d₁₀: 8.659 µm d₅₀: 41.22 μm 156.9 µm

Folk and Ward Statistics (Phi)

Mean: 4.67 Median: 4.60 Deviation: 1.69

Kurtosis: Skewness: 0.06 1.20

<10% <25% <50% <75% <90% 8.659 µm 19.71 µm 156.9 µm 41.22 µm 81.17 µm

<2 µm <63 µm <2000 µm 2.59% 66.6% 100%

Sample 20888	37.\$ls					
Particle Diameter µm	Volume %	Particle Diameter µm	Volume %			
	0.0011 0.0037 0.013 0.023 0.039 0.050 0.064 0.080 0.091 0.11 0.12 0.14 0.15 0.16 0.17 0.17 0.17 0.18 0.18 0.19 0.21 0.24 0.28 0.35 0.45 0.59 0.77 1.00 1.28 1.60 1.97 2.40 2.88 3.42		6.59 6.97 6.95 6.80 5.94 5.54 4.31 3.69 3.27 2.45 1.55 0.99 0.73 0.63 0.86 0.98 1.11 0.76 0.45 0.14 0.020 0.00026			
15.63 18.58 22.1 26.28	3.97 4.58 5.24 5.95					

29 May 2024

-Kenneth Pye Associates Ltd -----

Sample 2088	87.\$ls					
Channel Diameter (Lower) µm	Diff. Volume	Cum. < Volume %	Channel Diameter (Lower) µm	Diff. Volume	Cum. < Volume	
0.040 0.044 0.048 0.053 0.058 0.064 0.070 0.077 0.084 0.093 0.102 0.112 0.122 0.134 0.148 0.162 0.178 0.195 0.214 0.235 0.258 0.284 0.311 0.342 0.452 0.452 0.496 0.545 0.598 0.656 0.721 0.791 0.868 0.953 1.047 1.149 1.261 1.385 1.047 1.149 1.261 1.385 1.520 1.668 1.832 2.011 2.207 2.423 2.660 2.920 3.205 3.519 3.863 4.240 4.655 5.110 5.610 6.158 6.760 7.421 8.943 9.817 10.78	0.00042 0.00053 0.00082 0.0016 0.0034 0.0064 0.010 0.014 0.017 0.021 0.025 0.029 0.033 0.037 0.041 0.045 0.049 0.054 0.058 0.063 0.072 0.076 0.079 0.082 0.085 0.087 0.089 0.090 0.092 0.093 0.094 0.095 0.096 0.097 0.099 0.10 0.11 0.11 0.12 0.13 0.14 0.15 0.17 0.19 0.22 0.25 0.29 0.33 0.38 0.44 0.51 0.58 0.66 0.75 0.85 0.95 1.06 1.18 1.31 1.45	0 0.00042 0.00095 0.0018 0.0034 0.0068 0.013 0.023 0.037 0.055 0.076 0.10 0.13 0.16 0.20 0.24 0.29 0.34 0.39 0.45 0.51 0.58 0.65 0.73 0.81 0.89 0.97 1.06 1.15 1.24 1.33 1.42 1.52 1.61 1.71 1.80 1.90 2.00 2.11 2.22 2.34 2.46 2.60 2.75 2.92 3.11 3.32 3.57 3.86 4.19 4.58 5.02 5.53 6.11 6.77 7.52 8.37 9.32 10.4 11.6 12.9	11.83 12.99 14.26 15.65 17.18 18.86 20.70 22.73 24.95 27.39 30.07 33.01 36.24 39.78 43.67 47.94 52.62 57.77 63.41 69.61 76.42 83.89 92.09 101.1 111.0 121.8 133.7 146.8 161.2 176.9 194.2 213.2 234.1 256.9 282.1 309.6 339.6 339.7 449.7 493.6 541.9 594.9 653.0 716.8 786.9 863.9 948.3 1041 1143 1255 1377 1512 1660 1822 2000	1.60 1.75 1.91 2.07 2.24 2.41 2.60 2.79 3.00 3.21 3.41 3.58 3.77 3.76 3.69 3.58 3.43 3.26 3.07 2.89 2.69 2.49 2.28 2.06 1.83 1.61 1.40 1.19 0.98 0.79 0.61 0.47 0.38 0.33 0.34 0.33 0.34 0.35 0.55 0.55 0.55 0.55 0.55 0.55 0.55	14.3 15.9 17.7 19.6 23.9 26.3 28.9 31.7 37.9 41.3 44.9 48.6 52.4 56.1 59.8 63.4 66.8 70.1 73.2 76.1 78.7 81.2 83.5 85.6 87.4 99.4 99.4 99.4 99.9 99.9 99.9 99.9 9	

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. Unit 9, Langlands Place, East Kilbride, G75 0YF

e: acowe@sl rconsultin g.com jwelsh@sl rconsultin g.com **t:** 01355202915 **f:** 01923237404 **e:** scotland@i2analytical.com

Analytical Report Number: 24-026641

Project / Site name: Kintore-Hydrogen Plant **Samples received on:** 21/06/2024

Your job number: 428.013099.00001 **Samples instructed on/** 21/06/2024

Analysis started on:

Your order number: 010414-405 **Analysis completed by:** 02/07/2024

Report Issue Number: 1 **Report issued on:** 02/07/2024

Samples Analysed: 1 water sample

Signed:

Nicola Jupp

Senior Customer Service Advisor

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

4041

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 24-026641 Project / Site name: Kintore-Hydrogen Plant

Your Order No: 010414-405

Lab Sample Number	235724			
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	20/06/2024			
Time Taken				0850
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

Turbidity	NTU	1	NONE	< 1.0
Sulphate as SO ₄	mg/l	0.045	ISO 17025	7.94
Chloride	mg/l	0.15	ISO 17025	17
Silicon (total)	μg/l	50	NONE	4900
Fluoride	μg/l	50	ISO 17025	< 50
Ammoniacal Nitrogen as NH ₄ +	μg/l	15	ISO 17025	170
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	5.98
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	6
Nitrate as N	mg/l	0.01	ISO 17025	2.07
Nitrate as NO₃	mg/l	0.05	ISO 17025	9.17
Nitrite as N	μg/l	1	ISO 17025	19
Nitrite as NO ₂	μg/l	5	ISO 17025	63
Alkalinity as CaCO3 (titration)	mgCaCO 3/I	3	NONE	28
Alkalinity as CaCO ₃	mgCaCO 3/I	3	ISO 17025	24
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	11
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.09
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	7
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	98
Hardness - Total	mgCaCO 3/I	1	ISO 17025	49.6
Bicarbonate as HCO ₃	mgHCO3 /I	10	NONE	29
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0
Bromide	mg/l	0.002	ISO 17025	0.021
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

pH	pH Units	N/A	ISO 17025	6.9
Electrical Conductivity	μS/cm	10	ISO 17025	145

Heavy Metals / Metalloids

μg/l	1	ISO 17025	25
μg/l	1	ISO 17025	67
μg/l	0.4	ISO 17025	0.4
μg/l	0.4	ISO 17025	0.9
μg/l	0.15	ISO 17025	0.22
μg/l	0.15	ISO 17025	0.28
μg/l	0.06	ISO 17025	23
μg/l	0.06	ISO 17025	24
μg/l	0.02	ISO 17025	< 0.02
μg/l	0.02	ISO 17025	< 0.02
μg/l	0.2	ISO 17025	0.3
μg/l	0.2	ISO 17025	0.4
μg/l	0.5	ISO 17025	3.3
μg/l	0.5	ISO 17025	35
μg/l	0.05	ISO 17025	1
μg/l	0.05	ISO 17025	20
μg/l	0.05	ISO 17025	0.23
μg/l	0.05	ISO 17025	0.24
μg/l	0.5	ISO 17025	0.8
μg/l	0.5	ISO 17025	1.2
	Hall	ру/I 1 ру/I 0.4 ру/I 0.4 ру/I 0.4 ру/I 0.15 ру/I 0.15 ру/I 0.06 ру/I 0.02 ру/I 0.02 ру/I 0.2 ру/I 0.2 ру/I 0.5 ру/I 0.5 ру/I 0.5 ру/I 0.5 ру/I 0.5 ру/I 0.05 ру/I 0.05 ру/I 0.05 ру/I 0.05	µg/l 1 ISO 17025 µg/l 0.4 ISO 17025 µg/l 0.4 ISO 17025 µg/l 0.4 ISO 17025 µg/l 0.15 ISO 17025 µg/l 0.15 ISO 17025 µg/l 0.06 ISO 17025 µg/l 0.02 ISO 17025 µg/l 0.02 ISO 17025 µg/l 0.2 ISO 17025 µg/l 0.5 ISO 17025 µg/l 0.5 ISO 17025 µg/l 0.05 ISO 17025

Your Order No: 010414-405

Lab Sample Number	235724			
Sample Reference	SW01			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				20/06/2024
Time Taken				0850
Analytical Parameter (Water Analysis)				
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	0.82
Tin (total)	μg/l	0.2	ISO 17025	1.1
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.3
Zinc (total)	μg/l	0.5	ISO 17025	6.1
Boron (dissolved)	μg/l	10	ISO 17025	< 10
Boron (total)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	13
Calcium (total)	μg/l	12	ISO 17025	13000
Iron (dissolved)	mg/l	0.004	ISO 17025	0.073
Iron (total)	mg/l	0.004	ISO 17025	0.33
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.2
Magnesium (total)	mg/l	0.005	ISO 17025	4.2
Potassium (dissolved)	1.2			
Potassium (total)	mg/l	0.025	ISO 17025	1.3
Sodium (dissolved)	mg/l	0.01	ISO 17025	10
Sodium (total)	mg/l	0.01	ISO 17025	11

Subcontracted Analysis

PSD Laser Diffraction (Subcontracted)	N/A	NONE	See Attached

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total dissolved solids in water (Gravimetric)	solids in water (Gravimetric) Determination of total dissolved solids in water by In-house method based on BSEN 15216:2007 gravimetry				ISO 17025
Suspended Solids in water	Determined gravimetrically with GFC filtration papers	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004B	w	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	W	ISO 17025
Bromate in water by IC	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	ISO 17025
Exotic metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	NONE
Alkalinity in water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025	w	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW PW, GW	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Total organic carbon in water	Determination of total organic carbon in water by TOC/DOC NDIR analyser.Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices: SW, GW, PW, PrW (Al, Cu, Fe,Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW, PW, GW, PrW (AI, Fe, Cu, Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045B	w	ISO 17025
Chemical Oxygen Demand in water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065	w	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08	L078	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	ytical Test Name Analytical Method Description Analytical Method Reference				
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	py reaction with sodium salicylate In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08			
Total oxidised nitrogen in water	Calculation from nitrate and nitrite	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C- 04579.08	L078/L082B	W	NONE
Alkalinity in water (by discreet analyser)	Determination of Alkalinity by discrete analyser (colorimetry). Accredited matrices: SW,PW, GW,FSE,LL	In-house method based on MEWAM & USEPA Method 310.2	L082B	W	ISO 17025
Bicarbonate as HCO3 in water	Determination of Bicarbonate by discrete analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	NONE
Chloride in water	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW,PW, GW,FSE,LL	L082B	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples	In-house method based on Standard Method 8237	L083B	W	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW, LL	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Subcontracted analysis (water)	Subcontracted analysis - see attached subcon report.	Subcontracted analysis - see attached subcon report.			NONE
EK pH at 20°C in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW, [LL]	In-house method	L005F	W	ISO 17025
EK Electrical conductivity at 20°C of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031F	W	ISO 17025

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Quality control parameter failure associated with individual result applies to calculated sum of individuals.

The result for sum should be interpreted with caution

Analytical Report Number:

Project / Site name:

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
SW01	N/A	W	235724	С	EK pH at 20°C in water	L099	С
SW01	N/A	W	235724		EK Electrical conductivity at 20°C of water	L031F	С

Beckman Coulter LS Particle Size Analyzer

28 Jun 2024

Kenneth Pye Associates Ltd -

File name: C:\LS13320\Analyses\i2 Analytical\28-06-2024 24-026641\235724.\$ls

235724.\$ls

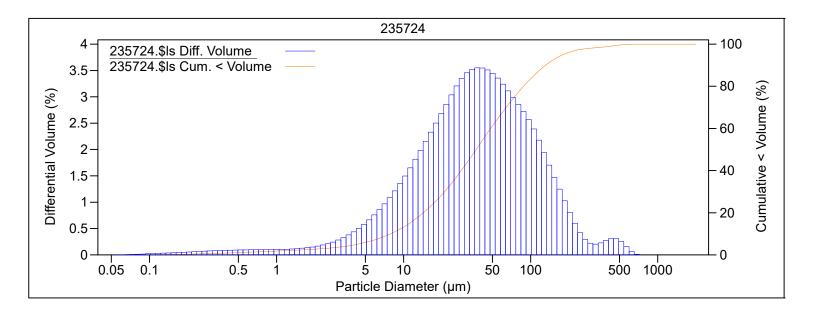
File ID: 235724 Sample ID: 235724 Operator: sjb Run number: 7574

Comment 1: Job Number: 24-026641

Comment 2: SW01 Kintore 20/06/2024 08:50 Optical model: NMBAQC.rf780d PIDS included

Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.17%


LS 13 320 Universal Liquid Module

Start time: 8:08 28 Jun 2024 Run length: 52 seconds

Pump speed: 50%
Obscuration: 8%
Fluid: Water
Software: 6.01

PIDS Obscur: 53%

Firmware: 4.00

28 Jun 2024

Kenneth Pye Associates Ltd —

Volume Statistics (Geometric) 235724.\$ls

Calculations from 0.040 μm to 2000 μm

100% Volume:

Mean: 33.24 µm S.D.: 3.403 37.24 µm Variance: 11.58 Median:

8.896 µm Skewness: -0.990 Left skewed D(3,2): Mean/Median ratio: 0.892 Kurtosis: 2.485 Leptokurtic

Mode: 37.97 µm

d₁₀: 7.894 µm d₅₀: 37.24 µm 131.3 µm

Folk and Ward Statistics (Phi)

Mean: 4.82 Median: 4.75 Deviation: 1.59

Kurtosis: Skewness: 0.11 1.06

<10% <25% <50% <75% <90% 7.894 µm 17.60 µm 37.24 µm 74.74 µm 131.3 µm

<2 µm <63 µm <2000 µm 69.4% 2.71% 100%

235	724.\$ls			
Pa	rticle	Volume	Particle	Volume
Di	ameter	%	Diameter	%
	μm		μm	
	0.043	0.0010	31.25	6.52
	0.051	0.0035	37.16	6.60
	0.061	0.012	44.19	6.48
	0.073	0.021	52.56	6.40
	0.086	0.036 0.048	63 75	5.71 5.50
	0.103 0.122	0.048	90	4.45
	0.122	0.082	106	3.90
	0.173	0.091	125	3.45
	0.205	0.11	150	2.57
	0.244	0.13	180	1.60
	0.29	0.15	212	0.95
	0.345	0.16	250	0.57
	0.411	0.17	300	0.39
	0.488	0.17	355	0.52
	0.581	0.18	425	0.53
	0.691 0.821	0.18 0.19	500 600	0.38 0.070
	0.821	0.19	710	0.0024
	1.161	0.21	850	0.0024
	1.381	0.23	1000	0
	1.642	0.26	1180	0
	1.953	0.32	1400	0
	2.323	0.40	1700	0
	2.762	0.51	2000	
	3.285	0.67		
	3.906	0.88		
	4.645 5.524	1.15 1.46		
	6.57	1.46		
	7.813	2.25		
	9.291	2.74		
	11.05	3.28		
	13.14	3.87		
	15.63	4.45		
	18.58	5.07		
	22.1	5.67		
	26.28	6.20		

28 Jun 2024

-Kenneth Pye Associates Ltd -----

235724.\$1s						
Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume %	Channel Diameter (Lower) µm	Diff. Volume %	Cum. < Volume	
μm 0.040 0.044 0.048 0.053 0.058 0.064 0.077 0.084 0.093 0.102 0.112 0.122 0.134 0.148 0.162 0.178 0.195 0.214 0.235 0.258 0.284 0.311 0.342 0.375 0.412 0.452 0.496 0.545 0.598 0.656 0.721 0.791 0.868 0.953 1.047 1.149 1.261 1.385 1.520 1.668 1.832 2.011 2.207 2.423 2.660 2.920 3.205 3.519 3.863 4.240 4.655 5.110 5.610 6.158 6.7621 8.147 8.943 9.817 10.78	0.00037 0.00049 0.00078 0.00015 0.0032 0.0060 0.0095 0.013 0.016 0.020 0.024 0.028 0.032 0.036 0.041 0.045 0.050 0.055 0.060 0.065 0.075 0.080 0.083 0.086 0.089 0.091 0.093 0.095 0.096 0.097 0.098 0.099 0.10 0.11 0.11 0.11 0.12 0.13 0.14 0.15 0.17 0.19 0.21 0.24 0.28 0.33 0.38 0.44 0.51 0.58 0.67 0.76 0.86 0.97 1.091 1.21 1.35 1.65	0 0.00037 0.00086 0.0016 0.0032 0.0064 0.012 0.022 0.035 0.051 0.071 0.095 0.12 0.16 0.19 0.23 0.33 0.38 0.44 0.51 0.58 0.65 0.73 0.81 0.90 0.99 1.08 1.17 1.27 1.37 1.46 1.56 1.66 1.76 1.86 1.97 2.07 2.19 2.30 2.43 2.57 2.72 2.88 3.07 3.28 3.38 3.38 3.44 4.51 4.95 5.46 6.04 6.70 7.46 8.32 9.29 10.4 11.6 12.9 14.4	11.83 12.99 14.26 15.65 17.18 18.86 20.70 22.73 24.95 27.39 30.07 33.01 36.24 39.78 43.67 47.94 52.62 57.77 63.41 69.61 76.42 83.89 92.09 101.1 111.0 121.8 133.7 146.8 161.2 176.9 194.2 213.2 234.1 256.9 282.1 309.6 339.9 373.1 409.6 339.9 373.1 409.6 339.9 373.1 409.6 541.9 594.9 653.0 716.8 786.9 863.9 948.3 1041 1143 1255 1377 1512 1660 1822 2000	1.82 1.98 2.16 2.33 2.50 2.68 2.86 3.04 3.21 3.35 3.46 3.52 3.55 3.55 3.51 3.45 3.35 3.24 3.11 2.98 2.85 2.72 2.57 2.39 2.18 1.70 1.47 1.25 1.03 0.81 0.60 0.42 0.29 0.22 0.20 0.23 0.27 0.31 0.31 0.010 0.013 0.010 0.0010	16.1 17.9 19.9 22.0 24.4 26.9 29.6 32.4 35.5 38.7 42.0 45.5 49.0 52.5 56.1 59.6 63.0 66.4 69.8 75.7 78.6 81.3 83.9 86.3 88.4 92.1 93.6 94.8 95.8 97.2 97.7 98.2 97.7 98.2 99.9 99.9 99.9 99.9 99.9 99.9 99.9	
10.70	1.00	17.7				

SLR Consulting Ltd 4/5 Lochside View Edinburgh Park Edinburgh EH12 9DH i2 Analytical Ltd. Unit 9, Langlands Place, East Kilbride, G75 0YF

e: acowe@sl rconsultin g.com jwelsh@sl rconsultin g.com **t:** 01355202915 **f:** 01923237404

e: scotland@i2analytical.com

Analytical Report Number: 24-029231

Project / Site name: Kintore - Hydrogen Plant Samples received on: 04/07/2024

Your job number: 428.013099.00001 Samples instructed on/ 04/07/2024 Analysis started on:

Analysis stateed on

Analysis completed by: 15/07/2024

Report Issue Number: 1 Report issued on: 16/07/2024

Samples Analysed: 1 water sample

010558-405

Your order number:

Signed: Askleyt Cumpam.

Ashleigh Cunningham Customer Service Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

4041

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 24-029231 Project / Site name: Kintore - Hydrogen Plant

Your Order No: 010558-405

10a: 01ac: 110: 010550 405				
Lab Sample Number	249121			
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	02/07/2024			
Time Taken	1010			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

General Inorganics				
pH (L099)	pH Units	N/A	ISO 17025	7.6
Electrical Conductivity at 20°C	μS/cm	10	ISO 17025	190
Turbidity	NTU	1	NONE	2
Sulphate as SO ₄	mg/l	0.045	ISO 17025	9.22
Chloride	mg/l	0.15	ISO 17025	20
Silicon (total)	μg/l	50	NONE	7000
Fluoride	μg/l	50	ISO 17025	59
Ammoniacal Nitrogen as NH ₄ +	μg/l	15	ISO 17025	< 15
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.36
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.49
Nitrate as N	mg/l	0.01	ISO 17025	2.77
Nitrate as NO₃	mg/l	0.05	ISO 17025	12.3
Nitrite as N	μg/l	1	ISO 17025	69
Nitrite as NO ₂	μg/l	5	ISO 17025	230
Alkalinity as CaCO₃ (titration)	mgCaCO 3/I	3	NONE	50
Alkalinity as CaCO₃	mgCaCO 3/I	3	ISO 17025	41
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	7.6
Total Oxidised Nitrogen (TON)	mg/l	0.02	NONE	2.84
Total Suspended Solids (L004B)	mg/l	2	ISO 17025	2
Total Dissolved Solids (Gravimetric) (L004B)	mg/l	4	ISO 17025	100
Hardness - Total	mgCaCO 3/I	1	ISO 17025	64.9
Bicarbonate as HCO₃	mgHCO3 /I	10	NONE	50
Carbonate Alkalinity as CO3	mgCO3/I	3	NONE	< 3.0
Bromide	mg/l	0.002	ISO 17025	0.033
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002

Heavy Metals / Metalloids

Aluminium (dissolved)	μg/l	1	ISO 17025	5.5
Aluminium (total)	μg/l	1	ISO 17025	14
Antimony (dissolved)	μg/l	0.4	ISO 17025	0.5
Antimony (total)	μg/l	0.4	ISO 17025	0.5
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.22
Arsenic (total)	μg/l	0.15	ISO 17025	0.25
Barium (dissolved)	μg/l	0.06	ISO 17025	32
Barium (total)	μg/l	0.06	ISO 17025	30
Cadmium (total)	μg/l	0.02	ISO 17025	< 0.02
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5
Chromium (total)	μg/l	0.2	ISO 17025	1.2
Copper (dissolved)	μg/l	0.5	ISO 17025	3.1
Copper (total)	μg/l	0.5	ISO 17025	4.4
Manganese (dissolved)	μg/l	0.05	ISO 17025	0.26
Manganese (total)	μg/l	0.05	ISO 17025	19
Molybdenum (dissolved)	μg/l	0.05	ISO 17025	0.25
Molybdenum (total)	μg/l	0.05	ISO 17025	0.3
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.6
Nickel (total)	μg/l	0.5	ISO 17025	0.7
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6

Your Order No: 010558-405

Lab Sample Number	249121			
Sample Reference	SW01			
Sample Number	None Supplied			
Depth (m)				None Supplied
Date Sampled	02/07/2024			
Time Taken	1010			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Selenium (total)	μg/l	0.6	ISO 17025	< 0.6
Tin (dissolved)	μg/l	0.2	ISO 17025	< 0.20
Tin (total)	μg/l	0.2	ISO 17025	2.1
Zinc (dissolved)	2.5			
Zinc (total)	μg/l	0.5	ISO 17025	12

Boron (dissolved)	μg/l	10	ISO 17025	< 10
Boron (total)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	17
Calcium (total)	μg/l	12	ISO 17025	18000
Iron (dissolved)	mg/l	0.004	ISO 17025	0.012
Iron (total)	mg/l	0.004	ISO 17025	0.13
Magnesium (dissolved)	mg/l	0.005	ISO 17025	5.4
Magnesium (total)	mg/l	0.005	ISO 17025	5.7
Potassium (dissolved)	mg/l	0.025	ISO 17025	1.2
Potassium (total)	mg/l	0.025	ISO 17025	1.1
Sodium (dissolved)	mg/l	0.01	ISO 17025	13
Sodium (total)	mg/l	0.01	ISO 17025	13

Subcontracted Analysis

PSD Laser Diffraction (Subcontracted)	N/A	NONE	See Attached

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total dissolved solids in water (Gravimetric)	Determination of total dissolved solids in water by gravimetry	In-house method based on BSEN 15216:2007	L004B	W	ISO 17025
Suspended Solids in water	Determined gravimetrically with GFC filtration papers	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004B	w	ISO 17025
Bromide in water by IC	Determination of bromide in waters by ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	w	ISO 17025
Bromate in water by IC	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW	In-house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008B	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	w	ISO 17025
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	ISO 17025
Exotic metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS	L012B	W	NONE
Alkalinity in water (by titration)	Determination of Alkalinity by titration	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L025	w	NONE
Electrical conductivity at 20°C of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031B	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW PW, GW	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	w	ISO 17025
Total organic carbon in water	Determination of total organic carbon in water by TOC/DOC NDIR analyser.Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices: SW, GW, PW, PrW (Al, Cu, Fe,Zn)	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	w	ISO 17025
Metals in water by ICP-OES (total)	Determination of metals in water by acidification followed by ICP-OES. Accredited matrices: SW, PW, GW, PrW (Al, Fe, Cu, Zn)		L039B	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045B	w	ISO 17025
Chemical Oxygen Demand in water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Nitrate as N in water	water Determination of nitrate by reaction with sodium salicylate In-house method based on Examination of Water and colorimetry. Accredited matrices SW, GW, PW 82/C-04579.08		L078	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08		W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite	In-house method based on Examination of Water Land Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08		W	NONE
Alkalinity in water (by discreet analyser)	Determination of Alkalinity by discrete analyser (colorimetry). Accredited matrices: SW,PW, GW,FSE,LL	In-house method based on MEWAM & USEPA Method 310.2	L082B	W	ISO 17025
Bicarbonate as HCO3 in water	Determination of Bicarbonate by discrete analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	NONE
Chloride in water	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW,PW, GW,FSE,LL	L082B	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	ISO 17025
Turbidity of in water	Determination of sample turbidity by colorimeter and comparison with standard reference samples	In-house method based on Standard Method 8237	L083B	W	NONE
pH at 20°C in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method	L099	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW, LL	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Subcontracted analysis (water)	Subcontracted analysis - see attached subcon report.	Subcontracted analysis - see attached subcon report.			NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution

Beckman Coulter LS Particle Size Analyzer

10 Jul 2024

Kenneth Pye Associates Ltd –

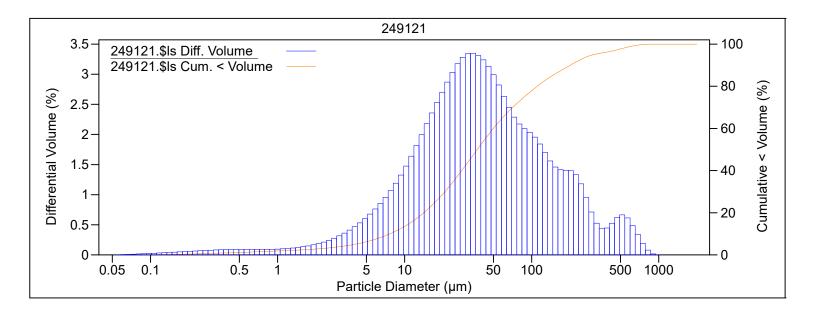
File name: C:\LS13320\Analyses\i2 Analytical\10-07-2024 24-029231\249121.\$ls

249121.\$ls

File ID: 249121 Sample ID: 249121 Operator: sjb Run number: 7659

Comment 1: Job No: 24-029231

Comment 2: SW01 Kintore 02/07/2024 10:10 Optical model: NMBAQC.rf780d PIDS included


Fluid R.I.: 1.333 Sample R.I.: 1.55 i0.1

Residual: 0.19%

LS 13 320 Universal Liquid Module

Start time: 9:35 10 Jul 2024 Run length: 51 seconds

Pump speed: 50%
Obscuration: 6% PIDS Obscur: 25%
Fluid: Water
Software: 6.01 Firmware: 4.00

10 Jul 2024

Kenneth Pye Associates Ltd —

Volume Statistics (Geometric) 249121.\$ls

Calculations from 0.040 μm to 2000 μm

100% Volume:

Mean: 36.64 µm S.D.: 3.903 37.34 µm Median: Variance: 15.23

 $8.557 \mu m$ -0.630 Left skewed D(3,2): Skewness: Mean/Median ratio: 0.981 Kurtosis: 1.605 Leptokurtic

Mode: 34.58 µm

d₁₀: 7.670 μm d₅₀: 37.34 μm 201.4 µm

Folk and Ward Statistics (Phi)

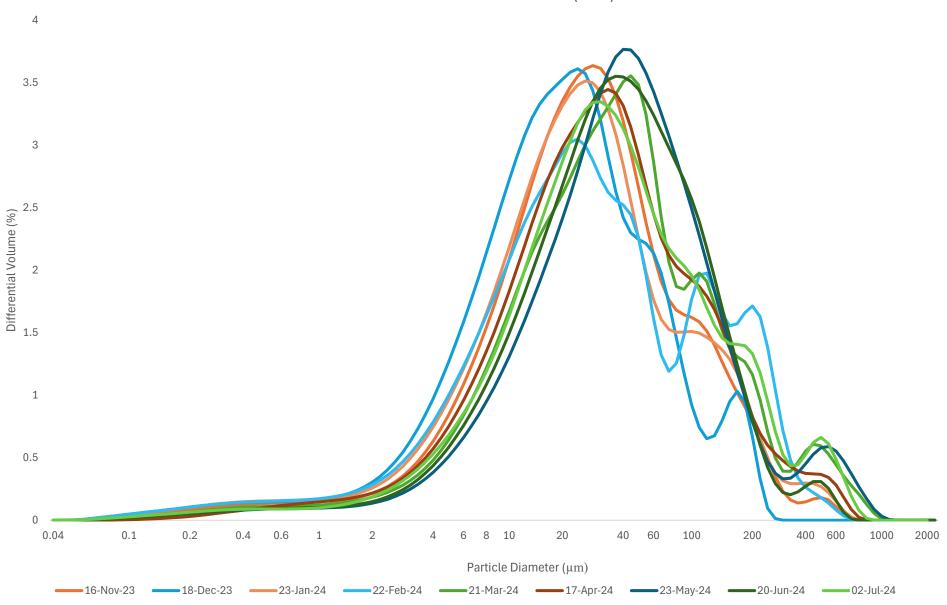
Mean: 4.68 Median: 4.74 Deviation: 1.84

Skewness: -0.01 Kurtosis: 1.10

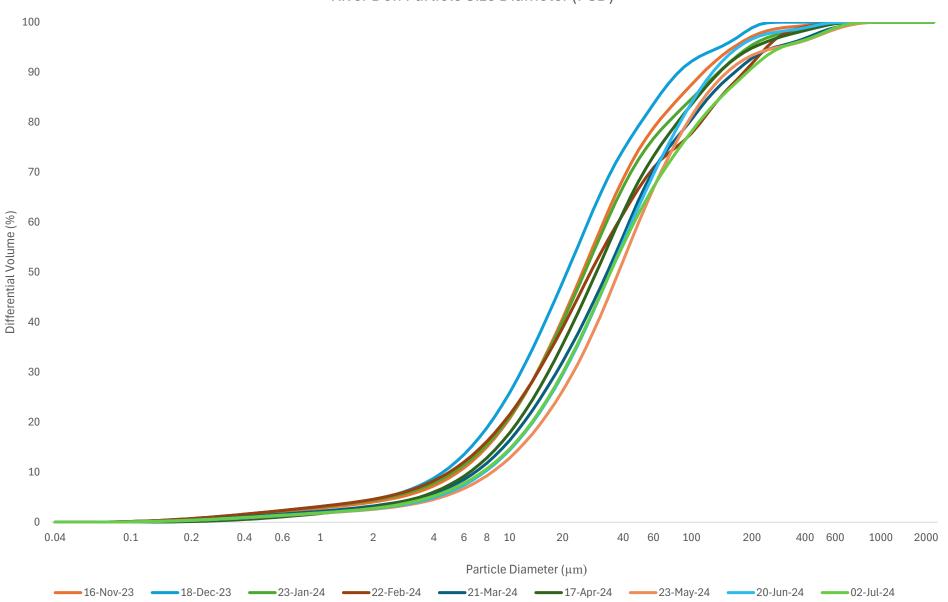
<10% <25% <50% <75% <90% 7.670 µm 17.39 µm 201.4 µm 37.34 µm 87.78 µm

<2 µm <63 µm <2000 µm 66.9% 2.76% 100%

Particle Diameter μm Volume μm Particle Diameter % Volume % 0.043 0.0013 31.25 6.21 0.051 0.0046 37.16 6.07 0.061 0.015 44.19 5.70 0.073 0.026 52.56 5.30 0.086 0.042 63 4.45 0.103 0.054 75 4.21 0.122 0.070 90 3.54 0.145 0.088 106 3.28 0.173 0.10 125 3.13 0.205 0.12 150 2.80 0.244 0.14 180 2.46 0.29 0.15 212 2.24 0.345 0.16 250 1.77 0.411 0.16 300 0.97 0.488 0.17 355 0.89 0.581 0.17 425 1.03 0.691 0.17 600 0.75 0.977 0.18 <
0.051 0.0046 37.16 6.07 0.061 0.015 44.19 5.70 0.073 0.026 52.56 5.30 0.086 0.042 63 4.45 0.103 0.054 75 4.21 0.122 0.070 90 3.54 0.145 0.088 106 3.28 0.173 0.10 125 3.13 0.205 0.12 150 2.80 0.244 0.14 180 2.46 0.29 0.15 212 2.24 0.345 0.16 250 1.77 0.411 0.16 300 0.97 0.488 0.17 355 0.89 0.581 0.17 425 1.03 0.691 0.17 500 1.23 0.821 0.17 600 0.75 0.977 0.18 710 0.29 1.161 0.20 850 0.032
1.642 0.29 1180 0 1.953 0.36 1400 0 2.323 0.45 1700 0 2.762 0.57 2000 3.285 0.73 3.906 0.93 4.645 1.18 5.524 1.46 6.57 1.80 7.813 2.21 9.291 2.70 11.05 3.27
11.05 13.14 3.90 15.63 4.50 18.58 5.10 22.1 5.65 26.28 6.07



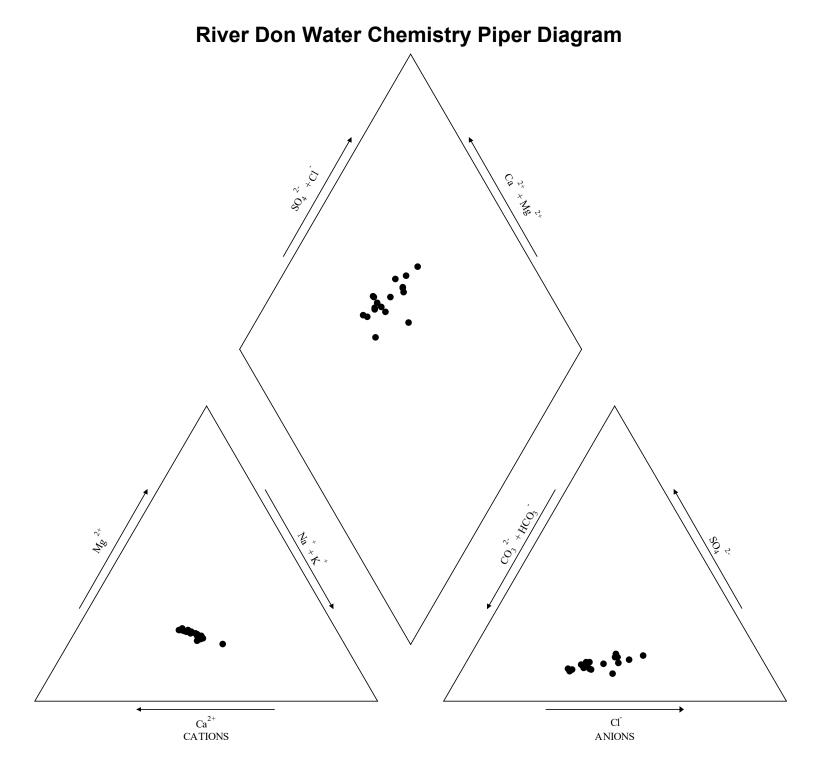
10 Jul 2024

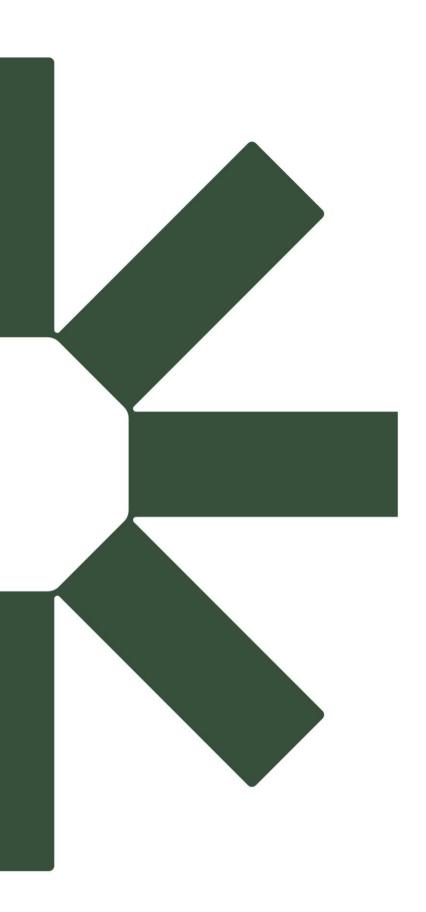

- Kenneth Pye Associates Ltd -----

249121.\$ls						
Channel	Diff.	Cum. <	Channel	Diff.	Cum. <	
Diameter	Volume	Volume	Diameter	Volume	Volume	
(Lower)	%	8	(Lower)	90	90	
μm			μm			
0.040	0.00043	0	11.83	1.81	16.3	
0.044	0.00059	0.00043	12.99	2.00	18.1	
0.048	0.00099 0.0021	0.0010 0.0020	14.26	2.18	20.1 22.3	
0.058	0.0021	0.0020	15.65 17.18	2.36 2.53	24.7	
0.064	0.0077	0.0041	18.86	2.70	27.2	
0.070	0.012	0.016	20.70	2.87	29.9	
0.077	0.015	0.028	22.73	3.03	32.8	
0.084	0.019	0.043	24.95	3.18	35.8	
0.093	0.023	0.062	27.39	3.28	39.0	
0.102	0.028	0.085	30.07	3.34	42.3	
0.112 0.122	0.032 0.036	0.11 0.14	33.01 36.24	3.35 3.31	45.6 49.0	
0.134	0.030	0.18	39.78	3.24	52.3	
0.148	0.045	0.22	43.67	3.13	55.5	
0.162	0.050	0.27	47.94	2.99	58.6	
0.178	0.055	0.32	52.62	2.82	61.6	
0.195	0.060	0.37	57.77	2.63	64.5	
0.214	0.065	0.43	63.41	2.45	67.1	
0.235 0.258	0.069 0.074	0.50 0.57	69.61 76.42	2.29 2.17	69.5 71.8	
0.236	0.074	0.64	83.89	2.17	74.0	
0.311	0.082	0.72	92.09	2.03	76.1	
0.342	0.085	0.80	101.1	1.96	78.1	
0.375	0.087	0.88	111.0	1.84	80.1	
0.412	0.088	0.97	121.8	1.70	81.9	
0.452	0.089	1.06	133.7	1.56	83.6	
0.496 0.545	0.090 0.090	1.15 1.24	146.8 161.2	1.46 1.41	85.2 86.7	
0.598	0.090	1.33	176.9	1.41	88.1	
0.656	0.091	1.42	194.2	1.40	89.5	
0.721	0.091	1.51	213.2	1.33	90.9	
0.791	0.092	1.60	234.1	1.18	92.2	
0.868	0.093	1.69	256.9	0.95	93.4	
0.953	0.096	1.79	282.1	0.71	94.3	
1.047 1.149	0.10 0.11	1.88 1.98	309.6 339.9	0.53 0.44	95.0 95.6	
1.261	0.11	2.09	373.1	0.45	96.0	
1.385	0.12	2.20	409.6	0.53	96.5	
1.520	0.13	2.32	449.7	0.62	97.0	
1.668	0.15	2.46	493.6	0.66	97.6	
1.832	0.17	2.61	541.9	0.61	98.3	
2.011	0.19	2.77	594.9	0.49	98.9	
2.207 2.423	0.21 0.24	2.96 3.18	653.0 716.8	0.34 0.19	99.4 99.7	
2.423	0.28	3.42	786.9	0.081	99.9	
2.920	0.32	3.69	863.9	0.017	99.98	
3.205	0.36	4.01	948.3	0.0016	99.998	
3.519	0.41	4.37	1041	0	100	
3.863	0.47	4.78	1143	0	100	
4.240	0.53	5.25 5.70	1255	0	100 100	
4.655 5.110	0.60 0.68	5.78 6.38	1377 1512	0	100	
5.610	0.76	7.06	1660	0	100	
6.158	0.86	7.82	1822	0	100	
6.760	0.96	8.68	2000	-	100	
7.421	1.07	9.63				
8.147	1.19	10.7				
8.943 9.817	1.33 1.48	11.9				
10.78	1.48	13.2 14.7				
	T • O 4	T.4. /				

Annex C Piper Diagram

Kintore Hydrogen Facility


Appendix 13.1: Water Quality Monitoring Data


Kintore Hydrogen Ltd

SLR Project No.: 428.013099.00001

18 July 2024

