

尜SLR

Kintore Hydrogen Facility

Appendix 13.3: Drainage Impact Assessment

Kintore Hydrogen Ltd

Prepared by:

SLR Consulting Limited

No. 50 Stirling Business Centre, Wellgreen, Stirling, FK8 2DZ

SLR Project No.: 428.013099.00001 Planning Application No: ENQ/2024/0415

5 September 2024

Revision: 02

Making Sustainability Happen

Revision	Date	Prepared By	Checked By	Authorised By
01	18 July 2024	S Bond	R Walker	G Robb
02	5 September 2024	S Bond	R Walker	G Robb
	Click to enter a date.			
	Click to enter a date.			
	Click to enter a date.			

Revision Record

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with Kintore Hydrogen Ltd (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty. In any case, SLR will only consider giving reliance on information provided by SLR within six years of the date of

provision of that information and cannot provide reliance on any third-party information referenced by SLR in the provision of information, advice, recommendations and opinions.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

Basi	s of Reporti
Acro	nyms and Abbreviations1
1.0	Background2
1.1	Introduction2
1.2	Site location
1.3	Flood risk terminology
1.4	Baseline conditions
1.4.1	Topography3
1.4.2	Geological and hydrogeological features3
1.4.3	Hydrological features4
1.4.4	Existing drainage regime4
2.0	Planning context and regulatory guidance5
2.1	National Planning Framework 4 (NPF4)5
2.2	Aberdeenshire Local Development Plan
2.2.1	Policy C4: Flooding6
2.3	Climate change allowance7
3.0	Outline surface water drainage strategy8
3.1	Sustainable drainage systems8
3.2	Drainage hierarchy9
3.3	Water quantity design standard10
3.4	Proposed surface water drainage strategy11
3.4.1	Impermeable areas11
3.5	Proposed drainage methods11
3.5.1	Electrolysis plant site12
3.5.2	e Gas injection site
3.5.3	Water abstraction, treatment and discharge site13
3.6	Surface water drainage systems exceedance13
3.7	Water quality design standard13
3.8	Firewater management15
3.9	Process water
3.10	Foul drainage15
4.0	Principal operation and maintenance requirements16
5.0	Conclusions18

Tables in Text

Table 3-1 : Suitability of Surface Water Disposal Methods	10
Table 3-2 : Assumed impermeable areas and greenfield runoff estimate	11
Table 3-3 : Pollution hazard potential for the Proposed Development	14
Table 3-4 : SuDS mitigation indices for proposed drainage system	14
Table 3-5 : SuDS performance: water quality indices assessment	14
Table 4-1 : Detention basin general maintenance requirements	16

Figures in Text

Figure 1-1 : Site location	2
Figure 3-1 : Four pillars of SuDS (after CIRIA Report C753)	8
Figure 3-2 : SuDS management train	9

Annexes

Annex A	Indicative Development Plans		
Annex B	Initial Drainage Calculations		

Acronyms and Abbreviations

AEP	Annual Exceedance Probability
AOD	Above Ordnance Datum
BGS	British Geological Survey
СС	Climate Change
DIA	Drainage Impact Assessment
FRA	Flood Risk Assessment
NPF4, NPF3	National Planning Framework 4, 3
NGR	National Grid Reference
OS	Ordnance Survey
RCP	Representative Concentration Pathway
SEPA	Scottish Environment Protection Agency
SPP	Scottish Planning Policy
SuDS	Sustainable urban Drainage Systems
UKCP18	United Kingdom Climate Projections – 2018 dataset

1.0 Background

1.1 Introduction

SLR Consulting Limited (SLR) was commissioned by Kintore Hydrogen Ltd (the "Client") to undertake a Drainage Impact Assessment (DIA) at the proposed Kintore electrolysis plant, water abstraction and treatment plant and the gas injection location (the "Sites").

This DIA report has been prepared to outline the proposed drainage strategy to manage surface water runoff and foul water disposal from the Proposed Development and has been completed in accordance with best practice guidance and legislation including National Planning Framework 4 (NPF4) and the Aberdeenshire Council's Local Development Plan.

A separate report considers flood risk to and from the Proposed Development and should be read in conjunction with this report.

1.2 Site location

The electrolysis plant site is located on land to the west of the existing Kintore Substation, approximately 2.8 km to the southwest of Kintore, Aberdeenshire, 0.3 km northwest of Leylodge and 0.5 km to the west of the B977.

The existing National Grid Gas high-pressure natural gas pipelines runs from north to south, 1.3 km to the west of the A96 and close to Broomhill Plantation. The proposed connection point would be in farmland around 1 km southwest of the A96 and Kinellar.

The consented water abstraction point is located on the south bank of the River Don off Rushlach Road, approximately 1.5 km southeast of the edge of Kintore.

The location of the Sites is presented on Figure 1-1 and illustrative development plans of the Sites is included in Annex A.

Figure 1-1 : Site location

1.3 Flood risk terminology

Flood risks are typically expressed by the probability of occurrence of an event (maximum rainfall amount, flood flow or other such indicator) of stated magnitude or greater in any one year – termed the Annual Exceedance Probability (AEP). This may be expressed as a percentage (such as 1%, 0.5%, etc.) by the equivalent chance of occurrence (1:100, 1:200, etc.). For convenience, the latter approach is used in this report.

Where storm or flood events have a climate change factor included, the event is denoted in this report by "+CC". For example, the 1:200 AEP storm event with climate change included is denoted "1:200+CC".

1.4 Baseline conditions

1.4.1 Topography

1.4.1.1 Electrolysis plant site

Ground elevations at the electrolysis plant site decrease from a high within the centre of the site, situated at approximately 130 m AOD. Elevations decrease northwards towards the Dewsford Burn to an elevation of approximately 100m AOD and southwards to an elevation of approximately 110 m AOD towards the Park Burn.

1.4.1.2 Gas injection site

Ground elevations within the gas injection site generally decrease south eastward towards Park Burn. Levels across the gas injection site range from approximately 78 m AOD to the northwest of the development area to approximately 75m AOD near the Park Burn.

1.4.1.3 Water abstraction, treatment and discharge site

Ground levels at the water abstraction, treatment and discharge site generally range from 60 m AOD within the southern extent of the water abstraction, treatment and discharge site to approximately 53m AOD near the existing Network Rail infrastructure.

1.4.2 Geological and hydrogeological features

1.4.2.1 Geology

British Geological Survey (BGS)¹ bedrock geological mapping shows that the western extent of the application site, including the electrolysis plant site and gas injection site, is underlain by Kemnay Pluton Formation (comprising granite) whilst the eastern extent of the application site, including the water abstraction, treatment and discharge site, is underlain by Aberdeen Formation (comprising psammite and semipelite).

The majority of the bedrock geology within the electrolysis plant site is overlain by superficial deposits of Banchory Till Formation which comprises of glacial till. An area of glaciofluvial sheet deposits is noted within the northern extent of the electrolysis plant site near the Dewsford Burn. The gas injection site is underlain by superficial deposits of the Banchory Till Formation to the north and lacustrine deposits to the south, with an area of glaciofluvial deposits across the centre of the gas injection site.

¹ British Geological Survey, Geoindex Onshore, available online, <u>https://mapapps2.bgs.ac.uk/geoindex/home.html</u> [Last Accessed July 2024]

Alluvium and glaciofluvial deposits are noted within the northern extent of the water abstraction, treatment and effluent discharge site, near the River Don and existing Network Rail infrastructure respectively, whilst the southern extent of the water abstraction, treatment and discharge site is underlain by superficial deposits of the Banchory Till Formation.

The bedrock is considered to be a low and very low productivity aquifer generally without groundwater except at shallow depths and with flow almost entirely through fractures and other discontinuities.

The superficial glacial till and lacustrine deposits are not considered significant aquifers whilst the alluvium, glaciofluvial sheet deposits and river terrace deposits are considered to be a moderate to high productivity aquifer with intergranular flow; groundwater within these deposits is likely to be in hydraulic conductivity with adjacent watercourses and perched above the lower permeability Till and bedrock.

1.4.3 Hydrological features

The Proposed Development lies entirely within the surface water catchment of the River Don which flows generally eastwards to the north of the water abstraction, treatment and discharge site.

The western and central extent of the application site, including the electrolysis plant site and gas injection site, is located within the Tuach Burn sub-catchment, which is a tributary of the River Don. Several tributaries of the Tuach Burn cross the application site including the Dewsford Burn, Park Burn, Tillakae Burn and Sheriff Burn.

The Dewsford Burn flows north eastwards through the northern extent of the electrolysis plant site, whilst the Park Burn flows generally eastwards to the south of the electrolysis plant site and gas injection site. The Park Burn turns northwards approximately 450 m east of the gas injection site before discharging into the Tuach Burn approximately 1.3 km northeast of the gas injection site.

The water abstraction, treatment and effluent discharge site is located approximately 90 m east of the Silver Burn, which is also tributary of the River Don. The burn is culverted under the existing Aberdeen to Inverness rail line before it discharges into the River Don.

1.4.4 Existing drainage regime

Aside from limited existing infrastructure, such as access tracks serving the existing farmland, the Sites comprises entirely of greenfield land. Pluvial and surface water flows across the Sites are therefore expected to follow existing topography.

Within the electrolysis plant site, site elevations decrease north and southwards from a high within the centre of the site. Any excess flows resulting from direct rainfall or surface water flows would be expected to migrate primarily north towards the Dewsford Burn or southward towards the Park Burn. Approximately one third of the electrolysis plant site area drains towards the Park Burn.

Within the gas injection site, any pluvial or surface water runoff will flow a south easterly direction before being intercepted by a series of open field drainage ditches which convey flows towards the Park Burn. Any flows not captured by the drainage ditches will also flow overground towards Park Burn.

Within the water abstraction, treatment and discharge site, any pluvial or surface water runoff will flow in a north westerly direction towards the Silver Burn before it is culverted under the existing Network Rail infrastructure which conveys water to the River Don. To the north of the railway line ground elevations fall northwards towards the River Don.

2.0 Planning context and regulatory guidance

2.1 National Planning Framework 4 (NPF4)

National Planning Framework 4 (NPF4)² was introduced in February 2023 and supersedes National Planning Framework 3 (NPF3) and Scottish Planning Policy (SPP) 2014. Flood risk is addressed in Policy 22 of NPF4, which states the following:-

- a) Development proposals at risk of flooding or in a flood risk area will only be supported if they are for:
 - i. essential infrastructure where the location is required for operational reasons;
 - ii. water compatible uses;
 - iii. redevelopment of an existing building or site for an equal or less vulnerable use; or,
 - iv. redevelopment of previously used sites in built up areas where the LDP has identified a need to bring these into positive use and where proposals demonstrate that long term safety and resilience can be secured in accordance with relevant SEPA advice.

The protection offered by an existing formal flood protection scheme or one under construction can be taken into account when determining flood risk. In such cases, it will be demonstrated by the applicant that:

- all risks of flooding are understood and addressed;
- there is no reduction in floodplain capacity, increased risk for others, or a need for future flood protection schemes;
- the development remains safe and operational during floods;
- flood resistant and resilient materials and construction methods are used; and
- future adaptations can be made to accommodate the effects of climate change.

Additionally, for development proposals meeting criteria part iv), where flood risk is managed at the site rather than avoided these will also require:

- the first occupied/utilised floor, and the underside of the development if relevant, to be above the flood risk level and have an additional allowance for freeboard; and
- that the proposal does not create an island of development and that safe access/ egress can be achieved.
 - b) Small scale extensions and alterations to existing buildings will only be supported where they will not significantly increase flood risk.
 - c) Development proposals will:
 - i. not increase the risk of surface water flooding to others, or itself be at risk.
 - ii. manage all rain and surface water through sustainable urban drainage systems (SUDS), which should form part of and integrate with proposed and existing blue green infrastructure. All proposals should presume no surface water connection to the combined sewer; and
 - iii. seek to minimise the area of impermeable surface.

² Scottish Government (2023) National Planning Framework 4 (NPF4)

- d) Development proposals will be supported if they can be connected to the public water mains. If connection is not feasible, the applicant will need to demonstrate that water for drinking water purposes will be sourced from a sustainable water source that is resilient to periods of water scarcity.
- e) Development proposals which create, expand or enhance opportunities for natural flood risk management, including blue and green infrastructure, will be supported.

NPF4 defines an area at risk of flooding as follows:

"For planning purposes, at risk of flooding or in a flood risk area means land or built form with an annual probability of being flooded of greater than 0.5% (1:200 AEP) which must include an appropriate allowance for future climate change.

This risk of flooding is indicated on SEPA's future flood maps or may need to be assessed in a flood risk assessment. An appropriate allowance for climate change should be taken from the latest available guidance and evidence available for application in Scotland. The calculated risk of flooding can take account of any existing, formal flood protection schemes in determining the risk to the site.

Where the risk of flooding is less than this threshold, areas will not be considered 'at risk of flooding' for planning purposes, but this does not mean there is no risk at all, just that the risk is sufficiently low to be acceptable for the purpose of planning. This includes areas where the risk of flooding is reduced below this threshold due to a formal flood protection scheme".

2.2 Aberdeenshire Local Development Plan³

2.2.1 Policy C4: Flooding

C4.1 Flood Risk Assessments should be undertaken in accordance with SEPA Technical Flood Risk Guidance and will be required for development in the indicative medium to high category of flood risk of 0.5% or greater annual probability (1 in 200 years or more frequent).

Assessments may also be required in areas of lower annual probability (0.1%- 0.5% annual probability) in circumstances where other factors indicate a potentially heightened risk or there are multiple sources of potential flooding. Assessments should include an allowance for freeboard and climate change. Development should not increase flood risk vulnerability and should avoid areas of medium to high risk, functional floodplain or other areas where the risks are otherwise assessed as heightened or unacceptable except where:

- It is a development to alleviate flooding or erosion of riverbanks or the coast;
- It is consistent with the flood storage and conveyance function of a floodplain;
- It would otherwise be less affected by flooding (such as a play area or car park);
- It is essential infrastructure. The location is essential for operational reasons for example for water-based navigation, agriculture, transport or utilities infrastructure and an alternative lower risk location is not available.

C4.2 If development is to be permitted on land assessed as at a medium to high risk of flooding it should be designed to be flood resilient for the lifetime of the development (this is normally a minimum of 100 years for residential development) and use construction methods to assist in the evacuation of people and minimise damage. It must not result in increased severity of flood risk elsewhere through altering flood storage capacity or the pattern and flow of flood waters.

³ Aberdeenshire Council (2023) Aberdeenshire Local Development Plan

C4.3 Buffer strips, for enhancement of the watercourse and necessary maintenance, must also be provided for any water body.

C4.4 These measures may also be required in areas of potentially lower risk of flooding (annual probability of more than 1:1000 years) or in coastal areas below the 10 metre contour should evidence demonstrate a heightened risk.

C4.5 In such areas land raising and/or excavations will only be permitted if it is for a flood alleviation measure, it is linked to the provision and maintenance of direct or indirect compensatory flood water storage to replace the lost capacity of the functional floodplain, and it will not create any inaccessible islands of development during flood events or result in the need for flood prevention measures elsewhere.

C4.6 We will not approve development that may contribute to flooding issues elsewhere. Sustainable Urban Drainage principles apply to all sites. C4.7 We are opposed to the enclosed culverting of watercourses for land gain and will actively seek to discourage such proposals. We encourage the daylighting (or de-culverting) of existing culverted watercourses.

2.3 Climate change allowance

The SEPA climate change allowances⁴ for flood risk assessment in land use planning version 4, November 2023 was used to inform the appropriate climate change allowances. SEPA allowances are based on the climate predictions (UKCP18). The SEPA guidance is based upon UKCP18 data, using Representative Concentration Pathway 8.5 (RCP 8.5), which assumes limited efforts to mitigate climate change, so that greenhouse gas levels in the atmosphere will continue to increase.

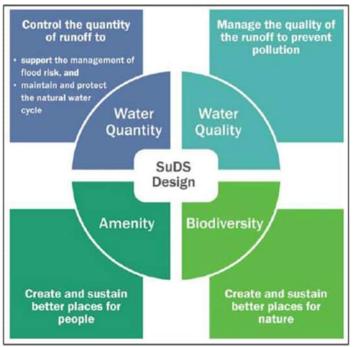
The most recent SEPA guidance recommends a 37% uplift to peak rainfall intensities for surface water catchments in the North East Scotland river basin region, within which the Sites lies. A factor of 37% has therefore been assumed in assessing the surface water management requirements in this report.

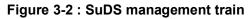
⁴ Scottish Environment Protection Agency (2022), Climate Change Allowances for Flood Risk Assessment in Land Use Planning, available online at https://www.sepa.org.uk/media/gq3c2xyb/climate-change-allowances-guidance-v4-final_nov23.pdf, Version 4 [Last accessed July 2024]

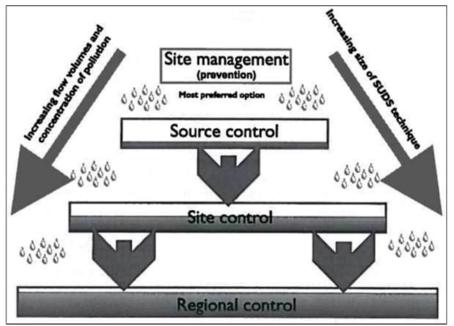
3.0 Outline surface water drainage strategy

3.1 Sustainable drainage systems

Current best practice guidance document 'The SuDS Manual' (CIRIA Report C753)⁵, promotes sustainable water management through the use of SuDS. There are four main categories of SuDS which are referred to as the 'four pillars of SuDS' as shown in Figure 3-1.




Figure 3-1 : Four pillars of SuDS (after CIRIA Report C753)


The SuDS Manual identifies a hierarchy of SuDS for managing runoff, which is commonly referred to as a 'management train' and is depicted in Figure 3-2.

- Prevention the use of good site design and housekeeping measures on individual sites to prevent runoff and pollution (e.g. minimise areas of hard standing).
- Source control control of runoff at or very near its source (such as the use of rainwater harvesting).
- Site control management of water from several sub-catchments (including routing water from roofs and car parks to one/several large soakaways for the whole site).
- Regional control management of runoff from several sites, typically in a retention pond or wetland.

⁵ CIRIA (2015) The SuDS Manual, CIRIA Report C753

It is generally accepted that the implementation of SuDS as opposed to conventional drainage systems, provides several benefits by:

- Reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream.
- Reducing the volumes and frequency of water flowing directly to watercourses or sewers from developed sites.
- Improving water quality over conventional surface water sewers by removing pollutants from diffuse pollutant sources.
- Reducing potable water demand through rainwater harvesting.
- Improving amenity through the provision of public open spaces and wildlife habitat; and replicating natural drainage patterns, including the recharge of groundwater so that base flows are maintained.

3.2 Drainage hierarchy

With reference to The SuDS Manual, the hierarchy of preferred disposal options for surface water runoff from development sites in decreasing order of sustainability is as follows:

- 1 Harvest and Reuse;
- 2 Infiltration to Ground;
- 3 Discharge to Surface Waters; or
- 4 Discharge to Sewer.

Table 3-1 summarises the suitability of disposal methods suitability in the context of the Sites.

Surface Water Disposal Method (in Order of Preference)	Suitability Description	Method Suitable? (Y / N)
Harvest and Reuse	Given the variability in rainfall and the water requirement of the hydrogen production site, rainwater harvesting and reuse is not considered viable. There may be limited opportunity for collection and use of storm water for secondary uses at site and these would be identified and confirmed during the detailed design stage of the project.	Ν
Infiltration to Ground	The Sites are underlain by metamorphic or igneous bedrock which are considered to be a low and very low productivity aquifer. Site investigation of the glaciofluvial deposits on the northern boundary of the electrolyser area was undertaken but only low permeability soils and infiltration rates were proven. It is unlikely that the drainage of surface water runoff to formal infiltration components will be feasible. The drainage scheme, for the electrolyser area, also needs to contain firewater and infiltration to ground is not compatible with containment of water.	Ν
Discharge to Surface Waters	All of the Sites are situated within proximity to an open watercourse (Dewsford Burn, Park Burn and Silver Burn) which can be used for discharge of surface water.	Y
Discharge to Sewer	The Sites are located on existing greenfield land remote from existing developments.	Ν

3.3 Water quantity design standard

Current best practice for surface water management and SuDS Design states the following with respect to control of post development 'Peak Runoff Rates' and 'Runoff Volume' from 'greenfield' sites.

The SuDS Manual (CIRIA Report C753) – Section 24.10.1:

"Additional runoff volumes from developments can cause increases in flood risk downstream of the site, even where peak flows from the site are controlled to greenfield rates.

Therefore, for extreme events, in addition to the standard for controlling the peak rate of runoff, there is also a standard that requires runoff volume control for the 1:100 year, 6 hour event. This is particularly critical for catchments that are susceptible to flooding downstream of the proposed development.

The difference in runoff volume between the development state and the equivalent greenfield (or possibly pre-development state where this is considered to be acceptable) is termed the Long-Term Storage Volume. It is this volume that should be prevented from leaving the site (via rainwater harvesting and/or infiltration) or, where this is not possible, controlled so that it discharges at very low rates that will have negligible impact on downstream flood risk. Only the greenfield (or pre-developed) runoff volume should be allowed to discharge at greenfield (or pre-developed) rates.

Where there is extra volume generated by the development that has to be discharged (because there are no opportunities for it to be infiltrated and/or used on site), this volume should be released at a very low rate (e.g. <2/l/s/ha or as agreed with the local drainage approving body

and/or environmental regulator) and the 1:100 year greenfield allowable runoff rate reduced to take account of this extra discharge (Kellagher, 2002).

An alternative approach to managing the extra runoff volumes from extreme events separately from the main drainage system is to release all runoff (above the 1 year event) from the site at a maximum rate of 2 *l/s/ha* or Q_{BAR} , whichever is the higher value (or as agreed with the drainage approving body and/or environmental regulator). This avoids the need to undertake more detailed calculations and modelling.

Kellagher (2002) demonstrates that if discharges are not limited to less than 3 l/s/ha, the drainage system will generally not be effective at retaining sufficient water on the site to prevent an increase in flood risk in the receiving catchment. A discharge limit of 2 l/s/ha (or Q_{BAR} , which allows for higher discharge rates for specific soil types) has generally been accepted as an appropriate industry standard in the UK, unless alternative site or catchment specific limits are agreed based on local risk evaluation."

In line with the above and based upon local planning guidance and that provided within NPF4, the peak surface water runoff rate from the proposed development will be restricted to 2 l/s/ha for all events up to and including the 1:200 AEP event + 37%CC.

3.4 **Proposed surface water drainage strategy**

3.4.1 Impermeable areas

Impermeable areas for each of the Sites have, at this stage, been based upon an estimate of 65% of the overall site area. This allows for reasonable estimates for surface water runoff to be made. However, the details regarding flow restrictions, impermeable areas and attenuation volumes will need to be finalised at the detailed design phase once the layout has been fixed for each site.

Due to the topography present within the electrolysis plant site, as elevations decrease to the north and south, this area has been split into two.

Table 3-2 below summarises the estimated impermeable areas based upon the overall site area for each part of the development, together with the calculated flow restriction based upon 2 l/s/ha:

Development area	Site area (ha)	Estimated impermeable area (65% of overall area) (ha)	Flow restriction (2 l/s/ha)
Electrolysis plant site (North)	38	24.7	49.4
Electrolysis plant site (South)	18	11.7	23.4
Water abstraction, treatment and discharge site	0.6	0.39	1
Gas injection site	1.6	1.04	2.1

While the calculated discharge rate for the water abstraction site, based upon 2 l/s/ha, is 0.8 l/s, a minimum flow restriction rate of 1 l/s has been applied to reduce the risk of blockage and ensure that the drainage system remains operational. To facilitate this discharge rate and to prevent blockage of the outflow it is likely a Hydro-Brake (or similar) will be specified at the detailed design stage.

3.5 **Proposed drainage methods**

The proposed drainage systems for each of the Sites are detailed below.

Initial modelling of each development area has been completed in order to estimate the required storm water attenuation volumes. The results of the initial modelling of attenuation volumes have been included in Annex B.

The proposed drainage strategy and the calculations presented with this report will be subject to change during detailed design of the site layout and the accompanying surface water drainage systems. Notwithstanding this, details of the provision that is likely to be made for each element of the Proposed Development is given in the sections that follow. It is shown that there is space, within the application boundary, to collect, treat and attenuate storm water runoff.

3.5.1 Electrolysis plant site

As noted in Table 3-2, the electrolysis plant site comprises a total development area of approximately 56 ha (excluding areas such as retained vegetation, landscaping, underground services etc within the overall larger application boundary). Due to the existing topography in this area, the area has been split into two (north and south) to facilitate effective drainage under gravity.

The northern part of the electrolysis plant site comprises a total developable area of 38 ha, with an estimated impermeable area of 24.7 ha. Based upon a maximum discharge rate of 2 l/s/ha, this results in a total flow restriction of 24.4 l/s for all events up to and including the 1:200+CC event. In order to maintain this rate, surface water attenuation of approximately $46,125 \text{ m}^3$ will be required.

It is proposed to drain surface water runoff from the northern part of the electrolysis plant site to a detention basin to the north of the proposed infrastructure before a restricted discharge to Dewsford Burn.

The southern part of the electrolysis plant site comprises a total developable area of 18 ha, with an estimated impermeable area of 11.7 ha. This subsequently results in an allowable discharge rate of 23.4 l/s for all events up to and including the 1:200+CC event. In order to maintain this rate, surface water attenuation of approximately 22,356 m³ will be required, which, similarly to the northern part of the electrolysis plant site, is proposed to be achieved through the inclusion of a detention basin. This detention basin is to be situated to the south of the development, receiving flows under gravity before a restricted discharge to Park Burn. If, as part of the detailed design stage of the project, and subject to site investigation data that confirms infiltration rates are suitable, some or all of the collected runoff could be discharged to ground

This configuration will maintain existing surface water catchments and water contributions to the Dewsford Burn and Park Burn.

It is noted that both attenuation volumes are large, and, if it is confirmed at the detailed design stage, that water storage of more than 10,000 m³ is required above existing ground levels, then advice will need to be sought from a registered Reservoirs Panel Engineer. However, studies undertaken to inform the proposed site layout suggest it may be possible to provide the required attenuation volumes without exceeding 10,000 m³ above ground level.

As part of the detailed design, elements of the proposed detention ponds (and if adopted soakaways) will be provided, and include, for example: details of impermeable lining, erosion protection and placement of rip-rap to dissipate flows and prevent erosion, headwall structures and flow limiting devices, such as Hydro-Brakes.

3.5.2 Gas injection site

The gas injection site comprises a total developable area of 1.6 ha with an estimated impermeable area of 1.04 ha. Based upon a maximum discharge rate of 2 l/s/ha, this results in

a flow restriction of 2.1 l/s for the development for all events up to and including the 1:200+CC event. In order to maintain this rate, surface water attenuation of approximately 1,864 m³ will be required.

Due to the proximity of the Park Burn to the south, it is proposed to drain surface water runoff from the impermeable areas via gravity to a detention basin before a restricted discharge to the watercourse.

Again, this will maintain existing water contribution to the Park Burn.

3.5.3 Water abstraction, treatment and discharge site

The water abstraction, treatment and discharge site comprises a developable area of approximately 0.6 ha, with an estimated impermeable area of 0.39 ha. Following the same methodology as the other development areas, this results in a calculated flow rate of 0.8 l/s and a minimum flow restriction of 1 l/s for the development for all events up to and including the 1:200+CC event. In order to maintain this rate, surface water attenuation of approximately 641 m³ will be required.

It is proposed to attenuate surface water runoff from this area with a detention basin before a restricted discharge to Silver Burn to the west of the water abstraction, treatment and discharge site.

3.6 Surface water drainage systems exceedance

Given that each of the proposed development areas within the Sites will be designed to attenuate rainfall for the 1:200+CC event, the likelihood of exceedance flows occurring is low. Furthermore, the risk of exceedance flow occurring in the event of a system failure is also considered to be minimal as the proposed drainage networks and their associated components will be regularly inspected and maintained.

In the unlikely event that the drainage system is overcome on any part of the application site, any exceedance flows would be expected to follow prevailing topography in each area. Within the northern electrolysis plant site extent, flows would continue north before being intercepted by Dewsford Burn, before following the natural route of the watercourse in an easterly direction. Within the southern electrolysis plant site and gas injection site, exceedance flows would be expected to run south before being intercepted by Park Burn, which would then convey flows in an easterly direction.

At the gas injection site any overland flow resulting from exceedance of the drainage system would pass eastward to the Park Burn.

Finally, within the water abstraction, treatment and discharge site flows would be expected to run northwest before being intercepted by the Silver Burn.

3.7 Water quality design standard

SuDS provide a number of water quality benefits by reducing pollutant levels in runoff through the interception/filtering of fine sediments, metals, hydrocarbons, and other pollutants.

The simple index method, as outlined within the SuDS manual, provides a way of quantifying the benefit to water quality of the SuDS management train. The pollution hazard from the land use and the mitigation from the SUDS component are each assigned an index. The total mitigation index must be greater than the pollution hazard index for adequate treatment to be delivered.

Total SuDS mitigation index ≥ pollution hazard index

(for each contaminant type) (for each containment type)

The total SuDS mitigation is the summation of the first components mitigation index and half the mitigation index of any subsequent component.

With reference to the SuDS manual, post development surface water runoff generated from the impermeable areas of under normal operating condition of the facility is considered to lie within the 'Low' Pollution Hazard Level as set out within Table 3-3:

	Pollution hazard indices			lices
Land use	Pollution hazard level	Total suspended Solids (TSS)	Metals	Hydrocarbons
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Low traffic roads and non-residential car parking/yards with infrequent change	Low	0.5	0.4	0.4

 Table 3-3 : Pollution hazard potential for the Proposed Development

The SuDS Mitigation Indices, provided by each individual detention basin prior to discharging to a waterbody, are outlined in Table 3-4:

Table 3-4 : SuDS mitigation indices for proposed drainage system

	SuDS mitigation indices			
SuDS feature	Total Suspended Solids (TSS)	Metals	Hydrocarbons	
Detention Basin	0.5	0.5	0.6	

The SuDS Mitigation Indices are compared to the Pollution Hazard Indices in Table 3-5 to determine the level of treatment provided.

Table 3-5 : SuDS performance: water quality indices assessment
--

		Pollution hazard and SuDS mitigation indices comparison								
Land use	Pollution hazard	Total Suspended Solids (TSS)		Metals		Hydrocarbons				
	level	Pollution Index	SuDS Mitigation Index	Pollution Index	SuDS Mitigation Index	Pollution Index	SuDS Mitigation Index			
Other roofs (typically commercial / industrial roofs)	Low	0.3	0.5	0.2	0.5	0.05	0.6			
Low traffic roads and non-	Low	0.5	0.5	0.5	0.5	0.5	0.6			

			Pollution hazard and SuDS mitigation indices comparison							
Land use	Pollution hazard level	Total Suspended Solids (TSS)		Metals		Hydrocarbons				
		Pollution Index	SuDS Mitigation Index	Pollution Index	SuDS Mitigation Index	Pollution Index	SuDS Mitigation Index			
residential car parking/yards with infrequent change										

As the SuDS mitigation index provided by the proposed SuDS measures are greater than or equal to the pollution hazard index for discharge to surface waters, the water quality assessment criteria are deemed to be satisfied.

3.8 Firewater management

Notwithstanding the SuDS mitigation index, provision will be made for firewater containment in the electrolyser area of the site. It is expected that this will be provided by lining the proposed detention ponds (north and, if a pond is required, south) with a low permeability liner and provision of a shutoff valve which can be used in the unlikely event of a fire to contain firewater in the pond(s) thus preventing a discharge from site to the Dewsford Burn or Park Burn. Details of this will be provided during the detailed design stage of the project.

Should a soakaway be confirmed at the detailed design stage in the south of the site a lined pond will be provided upstream of the soakaway that would incorporate a emergency shut-off valve and which will contain firewater prior to discharge to the soakaway (and therefore to ground). The size of the pond would be agreed with SEPA and AC.

3.9 Process water

No process water would be discharged to the storm water drainage system.

All process water will be collected and either be recirculated and used in the process (with or without treatment), tankered from site for disposal at an appropriately licensed facility or be treated on site and discharged with authorisation from SEPA in accordance with the site PPC Permit.

Details of the process water management, including volume and composition, will be confirmed as part of the detailed site design and will be a primary part of the site PPC Permit application to SEPA.

3.10 Foul drainage

Foul water generated at site, from welfare and kitchen facilities etc., will drain to an on-site package waste water treatment plant. The discharge from the treatment plant will be agreed with SEPA, as required by the PPC and Controlled Activity Regulations, and will include limits regarding volume and rate of discharge and limits on the quality of the discharge water. Again, the design of the treatment plant will be confirmed as part of the detailed design stage of the project.

4.0 Principal operation and maintenance requirements

All surface water drainage and pollution control features associated with the Sites will remain under private ownership and will be maintained privately for their lifetime. Table 4-1 outlines the recommended inspection and maintenance requirements for the proposed detention basins. If necessary, this outline operation and maintenance plan will be refined as part of the detailed design phase of the project.

Maintenance schedule	Required action	Minimum frequency
Regular	Remove litter and debris removal.	Monthly.
maintenance	Cut grass.	Half yearly (spring – before nesting season, and autumn).
	Manage other vegetation and remove nuisance plants.	Monthly (or as required).
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly.
	Inspect banksides, liner, structures, pipework etc. for evidence of physical damage.	Monthly.
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), then annually or as required.
	Check any penstocks and other mechanical devices.	Annually.
	Tidy all dead growth before start of growing season.	Annually.
	Remove sediment from inlet, outlets and forebay.	Annually (or as required).
	Manage wetland plants in outlet pool – where provided.	Annually.
	Removing sedimentation that has become entrained into the outflow	Six monthly, or as required
	Ensure there are no leakage issues associated with the HydroBrake	Six monthly, or as required
	Check HydroBrake for sedimentation, or other blockages and flow bypassing	Six monthly
Occasional	Re-seed areas of poor vegetation growth.	As required.
maintenance	Prune and trim any trees and remove cuttings.	Every 2 years, or as required.
	Remove sediment from inlets, outlets, forebay and main basin when required.	Every 5 years, or as required.

Table 4-1 : Detention basin general maintenance requirements

Maintenance schedule	Required action	Minimum frequency
	Periodic measuring of the bore size	Every 3 years, or as required.
Remedial actions	Repair erosion or other damage by reseeding or re-turfing.	As required.
	Realignment of rip-rap.	As required.
	Repair/rehabilitation of inlets, outlets and overflows.	As required.
	Relevel uneven surfaces and reinstate design levels.	As required.

5.0 Conclusions

SLR Consulting Ltd (SLR) has been appointed by Kintore Hydrogen Ltd to prepare a Drainage Impact Assessment (DIA) for the proposed Kintore Hydrogen Plant.

This DIA sets out high level principles for managing surface water runoff from the Proposed Development and demonstrates that the scheme is feasible and compliant with best practice and regulatory requirements. It has been shown that there is space within land in the application boundary to provide the required water attenuation and treatment features.

It has been confirmed that discharge to open watercourses for each development area is the preferred management option. Due to the scale of the Proposed Development, different areas of the development are proposed to discharge to the nearest of three watercourses: Dewsford Burn; Park Burn; and Silver Burn.

The Proposed Development surface water runoff will be restricted to the equivalent greenfield runoff rate of 2 l/s/ha for all events up to and including the 1:200 + 37% CC rainfall event.

Attenuation for each of the development areas will be achieved via the use of detention basins. These detention basins will also ensure that surface water runoff is sufficiently treated and water quality is maintained in line with the relevant guidance.

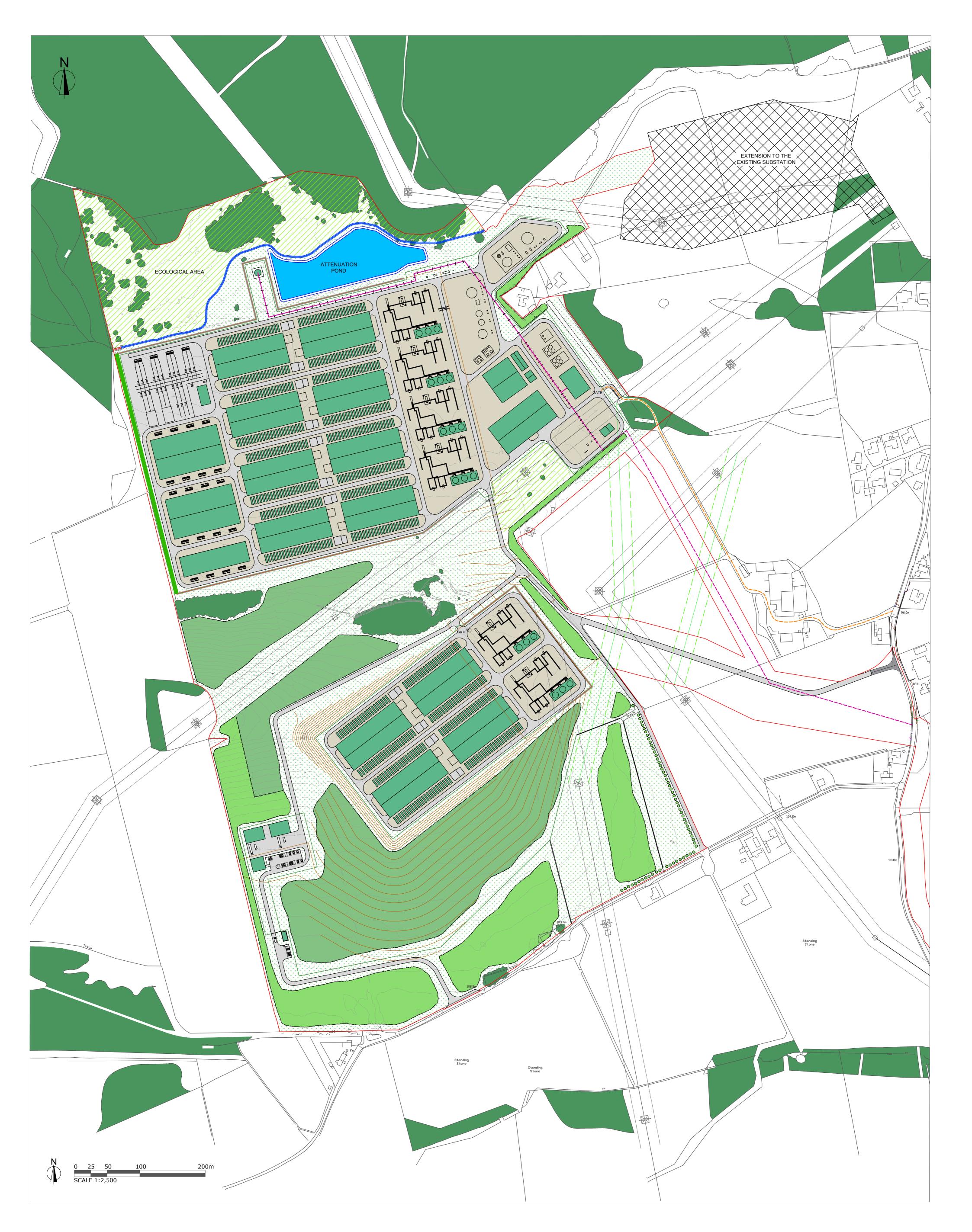
It has also been confirmed that firewater attenuation will be provided for in the electrolyser area of the site, and that as part of the detailed design stage of the project details will be confirmed regarding required firewater attenuation.

The drainage principles set out within this DIA will be developed further as part of the detailed design stage of the project.

Annex A Indicative Development Plans

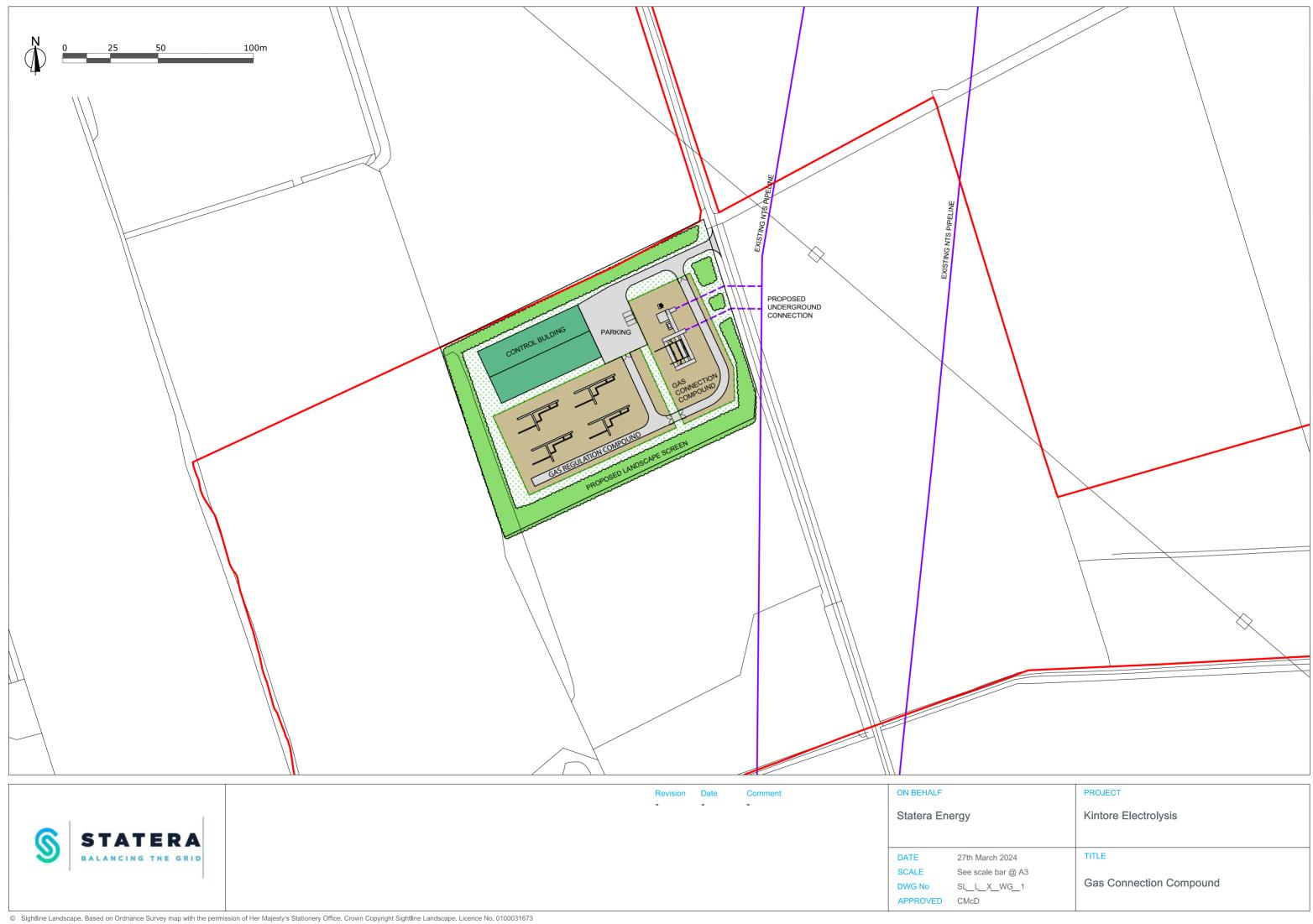
Kintore Hydrogen Facility

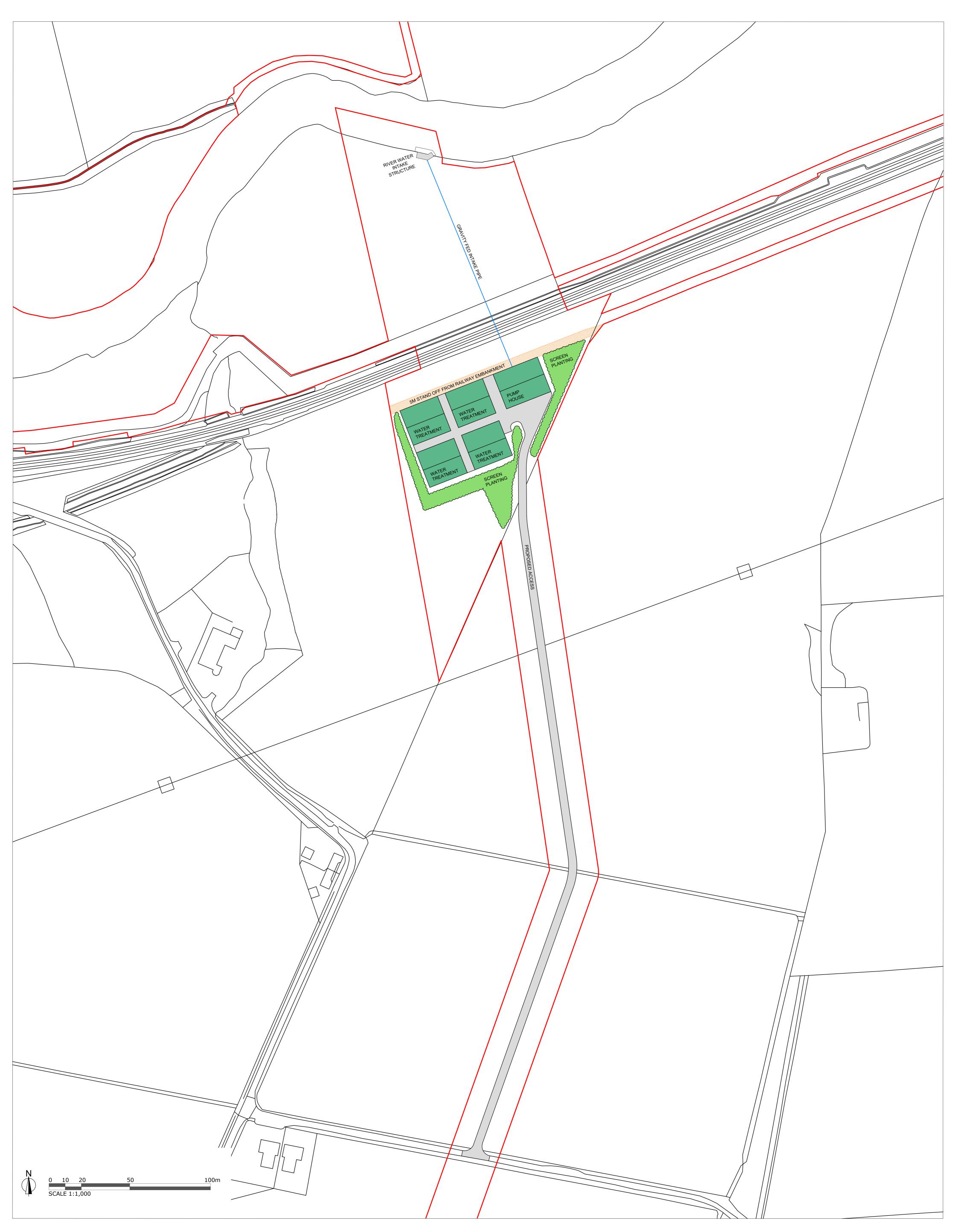
Appendix 13.3: Drainage Impact Assessment


Kintore Hydrogen Ltd

SLR Project No.: 428.013099.00001

5 September 2024


Note: this shows illustrative masterplans which are subject further design, within the envelope defined by the Planning Parameters Plan accompanying the planning application. Details such as building sizes and orientations, access road and landscape planting are indicative only.



	STATERA	Legend Site boundary Existing hedgerows and trees Extension to existing substation	Ecological area Fencing Stone access track	Hydrogen pipeline Attenuation pond Watercourse reroute (if needed)	Proposed 1m contours Specimen tree planting	Revision A	Date 22.05.24	Comment Access arrangement altered	ON BEHALF	ergy	PROJECT Kintore Electrolysis
9	BALANCING THE GRID	Bund Diverted line electricity clearance zone Diverted route of overhead electrici line*. *Estimated alignments - third party (Transmission Owner) works		Loose permeable gravel Other planting (e.g. wildflower grassland) Emergency access route					DATE SCALE DWG No APPROVED	27th March 2024 1 : 2,500 @ A1 SL260_L_X_MP_2 CMcD	TITLE Masterplan Option 1

© Sightline Landscape. Based on Ordnance Survey map with the permission of Her Majesty's Stationery Office. Crown Copyright Sightline Landscape. Licence No. 0100031673

	PROJECT
	Kintore Electrolysis
2024	TITLE
ar @ A3 WG1	Gas Connection Compound

STATERA	Revision Date Comment	ON BEHALF Statera Energy	PROJECT Kintore Electrolysis
BALANCING THE GRID		DATE 27th March 2024 SCALE 1 : 1,0000 @ A1 DWG No SL260_L_X_WG_2 APPROVED CMcD	TITLE Water Treatment Works

© Sightline Landscape. Based on Ordnance Survey map with the permission of Her Majesty's Stationery Office. Crown Copyright Sightline Landscape. Licence No. 0100031673

Annex B Initial Drainage Calculations

Kintore Hydrogen Facility

Appendix 13.3: Drainage Impact Assessment

Kintore Hydrogen Ltd

SLR Project No.: 428.013099.00001

5 September 2024

SLR Consult 15 Middle P Nottingham NG1 7DX		File: Electrolysis N Network: Storm N Designed by: SCB 03/06/2024	-	Page 1
	Des	ign Settings		
M5-60 (mm) 17.0 Ratio-R 0.20 CV 0.75	Return Period (years) 1 Additional Flow (%) 0 FSR Region Scotland and Ireland M5-60 (mm) 17.000 Ratio-R 0.200 CV 0.750			mins) 30.00 m/hr) 50.0 (m/s) 1.00 Type Level Soffits at (m) 0.200 h (m) 1.200 ound √ rules √
	Simula	ation Settings		
Rainfall Methodol FSR Reg M5-60 (n Rati Summer Winter Analysis Spo Skip Steady St	ion Scotland and im) 17.000 o-R 0.200 CV 0.750 CV 0.840 eed Normal	Ireland Additior Check	Down Time (mir Ial Storage (m³/h Discharge Rater 1 year (l, 2 year (l, 30 year (l, 100 year (l, Discharge Volun	a)20.0(s) \checkmark \checkmark 0.0 \checkmark 0.0 \checkmark 0.0 \checkmark 0.0 \checkmark 0.0
	Stor	m Durations		
156018030120240	360600480720	960216014402880	4320 720 5760 864	
Return Peri (years)	od Climate Chang (CC %)	ge Additional Area (A %)	Additional Flo (Q %)	w
1 2	30 30 3 00 00	0 0 0 0 7 0 0 0 0 0 7 0 7 0		0 0 0 0 0
	Pre-develop	ment Discharge Rate	<u>!</u>	
	field Method H12 led Area (ha) SAAR (mm) Soil Index 1 SPR 0.10 Region 1	24 Growth F	Factor 30 year Factor 100 year Betterment (%) QBar Q 1 year (I/s) Q 30 year (I/s) Q 100 year (I/s)	1.95 2.48 0
Growth	actor i year 0.85			
Growth		ne Hydro-Brake [®] Cor	ntrol	

尜SLR	SLR Consulting Limited 15 Middle Pavement Nottingham NG1 7DX	File: Electrolysis North.pfd Network: Storm Network Designed by: SCB 03/06/2024	Page 2					
Node Basin Depth/Area Storage Structure								
Base Inf Coeffic	cient (m/hr) 0.00000 Safety	Factor 2.0 Inve	rt Level (m) 98.000					

Base Inf Coefficient (m/h Side Inf Coefficient (m/h	,	'	actor 2.0 rosity 1.00 Tin		Invert I to half emp	· · /	98.00
Dep (m 0.00) (m²)	Inf Area (m²) 0.0	Depth (m) 2.000	Area (m²) 31253.6	Inf Area (m²) 0.0		

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year 15 minute summer	82.148	23.245
1 year 15 minute summer	57.648	23.245
1 year 15 minute winter	57.048	25.245 16.780
1 year 30 minute summer		
1 year 30 minute winter	41.614	16.780
1 year 60 minute summer	44.644	11.798
1 year 60 minute winter	29.660	11.798
1 year 120 minute summer	30.990	8.190
1 year 120 minute winter	20.589	8.190
1 year 180 minute summer	25.650	6.601
1 year 180 minute winter	16.673	6.601
1 year 240 minute summer	21.411	5.658
1 year 240 minute winter	14.225	5.658
1 year 360 minute summer	17.661	4.545
1 year 360 minute winter	11.480	4.545
1 year 480 minute summer	14.807	3.913
1 year 480 minute winter	9.838	3.913
1 year 600 minute summer	12.657	3.462
1 year 600 minute winter	8.648	3.462
1 year 720 minute summer	11.689	3.133
1 year 720 minute winter	7.856	3.133
1 year 960 minute summer	10.151	2.673
1 year 960 minute winter	6.724	2.673
1 year 1440 minute summer	7.983	2.139
1 year 1440 minute winter	5.365	2.139
1 year 2160 minute summer	6.191	1.711
1 year 2160 minute winter	4.266	1.711
1 year 2880 minute summer	5.435	1.457
1 year 2880 minute winter	3.653	1.457
1 year 4320 minute summer	4.438	1.160
1 year 4320 minute winter	2.923	1.160
1 year 5760 minute summer	3.852	0.986
1 year 5760 minute winter	2.493	0.986
1 year 7200 minute summer	3.407	0.869
1 year 7200 minute winter	2.199	0.869
1 year 8640 minute summer	3.075	0.784
1 year 8640 minute winter	1.984	0.784
1 year 10080 minute summer	2.819	0.719
1 year 10080 minute winter	1.820	0.719
30 year 15 minute summer	182.169	51.548
30 year 15 minute winter	127.838	51.548
30 year 30 minute summer	131.901	37.323
30 year 30 minute winter	92.562	37.323
30 year 60 minute summer	97.144	25.672

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)		
20 year 60 minute winter				
30 year 60 minute winter	64.540	25.672 17.210		
30 year 120 minute summer	65.121			
30 year 120 minute winter	43.265	17.210		
30 year 180 minute summer	52.556	13.524		
30 year 180 minute winter	34.163	13.524		
30 year 240 minute summer	43.046	11.376		
30 year 240 minute winter	28.598	11.376		
30 year 360 minute summer	34.569	8.896		
30 year 360 minute winter	22.471	8.896		
30 year 480 minute summer	28.244	7.464		
30 year 480 minute winter	18.764	7.464		
30 year 600 minute summer	23.808	6.512		
30 year 600 minute winter	16.267	6.512		
30 year 720 minute summer	21.733	5.825		
30 year 720 minute winter	14.606	5.825		
30 year 960 minute summer	18.543	4.883		
30 year 960 minute winter	12.283	4.883		
30 year 1440 minute summer	14.187	3.802		
30 year 1440 minute winter	9.535	3.802		
30 year 2160 minute summer	10.697	2.956		
30 year 2160 minute winter	7.371	2.956		
30 year 2880 minute summer	9.222	2.471		
30 year 2880 minute winter	6.198	2.471		
30 year 4320 minute summer	7.342	1.920		
30 year 4320 minute winter	4.835	1.920		
30 year 5760 minute summer	6.271	1.605		
30 year 5760 minute winter	4.059	1.605		
30 year 7200 minute summer	5.482	1.399		
30 year 7200 minute winter	3.538	1.399		
30 year 8640 minute summer	4.902	1.250		
30 year 8640 minute winter	3.164	1.250		
30 year 10080 minute summer	4.462	1.138		
30 year 10080 minute winter	2.880	1.138		
30 year +37% CC 15 minute summer	249.571	70.620		
30 year +37% CC 15 minute winter	175.138	70.620		
30 year +37% CC 30 minute summer	180.704	51.133		
30 year +37% CC 30 minute winter	126.810	51.133		
30 year +37% CC 60 minute summer	133.087	35.171		
30 year +37% CC 60 minute winter	88.420	35.171		
30 year +37% CC 120 minute summer	89.216	23.577		
30 year +37% CC 120 minute winter	59.273	23.577		
30 year +37% CC 180 minute summer	72.002	18.528		
30 year +37% CC 180 minute winter	46.803	18.528		
30 year +37% CC 240 minute summer	58.972	15.585		
30 year +37% CC 240 minute winter	39.180	15.585		
30 year +37% CC 360 minute summer	47.359	12.187		
30 year +37% CC 360 minute winter	30.785	12.187		
30 year +37% CC 480 minute summer	38.694	10.226		
30 year +37% CC 480 minute winter	25.707	10.226		
30 year +37% CC 600 minute summer	32.617	8.922		
30 year +37% CC 600 minute winter	22.286	8.922		
30 year +37% CC 720 minute summer	29.774	7.980		

Event	Peak Intensity	Average Intensity			
	(mm/hr)	(mm/hr)			
30 year +37% CC 720 minute winter	20.010	7.980			
30 year +37% CC 960 minute summer	25.404	6.690			
30 year +37% CC 960 minute winter	16.828	6.690			
30 year +37% CC 1440 minute summer	19.436	5.209			
30 year +37% CC 1440 minute winter	13.062	5.209			
30 year +37% CC 2160 minute summer	14.655	4.050			
30 year +37% CC 2160 minute winter	10.098	4.050			
30 year +37% CC 2880 minute summer	12.634	3.386			
30 year +37% CC 2880 minute winter	8.491	3.386			
30 year +37% CC 4320 minute summer	10.059	2.630			
30 year +37% CC 4320 minute winter	6.624	2.630			
30 year +37% CC 5760 minute summer	8.591	2.199			
30 year +37% CC 5760 minute winter	5.561	2.199			
30 year +37% CC 7200 minute summer	7.511	1.916			
30 year +37% CC 7200 minute winter	4.847	1.916			
30 year +37% CC 8640 minute summer	6.716	1.713			
30 year +37% CC 8640 minute winter	4.334	1.713			
30 year +37% CC 10080 minute summer	6.114	1.560			
30 year +37% CC 10080 minute winter	3.946	1.560			
100 year 15 minute summer	235.662	66.684			
100 year 15 minute winter	165.377	66.684			
100 year 30 minute summer	172.134	48.708			
100 year 30 minute winter	120.796	48.708			
100 year 60 minute summer	126.118	33.329			
100 year 60 minute winter	83.790	33.329			
100 year 120 minute summer	83.627	22.100			
100 year 120 minute winter	55.560	22.100			
100 year 180 minute summer	66.955	17.230			
100 year 180 minute winter	43.522	17.230			
100 year 240 minute summer	54.503	14.403			
100 year 240 minute winter	36.210	14.403			
100 year 360 minute summer	43.371	11.161			
100 year 360 minute winter	28.192	11.161			
100 year 480 minute summer	35.198	9.302			
100 year 480 minute winter	23.385	9.302			
100 year 600 minute summer	29.515	8.073			
100 year 600 minute winter	20.167	8.073			
100 year 720 minute summer	26.828	7.190			
100 year 720 minute winter	18.030	7.190			
100 year 960 minute summer	22.736	5.987			
100 year 960 minute winter	15.061	5.987			
100 year 1440 minute summer	17.216	4.614			
100 year 1440 minute winter 100 year 2160 minute summer	11.571 12.838	4.614 3.548			
100 year 2160 minute summer	8.846	3.548			
100 year 2880 minute summer	10.977	2.942			
100 year 2880 minute winter	7.377	2.942			
100 year 4320 minute summer	8.639	2.942			
100 year 4320 minute summer	5.689	2.259			
100 year 5760 minute summer	7.320	1.874			
100 year 5760 minute winter	4.738	1.874			
100 year 7200 minute summer	6.364	1.623			

Flow+ v10.6.234 Copyright © 1988-2024 Causeway Technologies Ltd

Event	Peak	Average
	Intensity	Intensity
	, (mm/hr)	(mm/hr)
100 year 7200 minute winter	4.107	1.623
100 year 8640 minute summer	5.667	1.446
100 year 8640 minute winter	3.657	1.446
100 year 10080 minute summer	5.143	1.312
100 year 10080 minute winter	3.319	1.312
200 year 15 minute summer	273.315	77.339
200 year 15 minute winter	191.800	77.339
200 year 30 minute summer	200.647	56.776
200 year 30 minute winter	140.805	56.776
200 year 60 minute summer	146.569	38.734
200 year 60 minute winter	97.377	38.734
200 year 120 minute summer	96.580	25.523
200 year 120 minute winter	64.165	25.523
200 year 180 minute summer	76.970	19.807
200 year 180 minute winter	50.033	19.807
200 year 240 minute summer	62.434	16.499
200 year 240 minute winter	41.480	16.499
200 year 360 minute summer	49.421	12.718
200 year 360 minute winter	32.125	12.718
200 year 480 minute summer	39.953	10.558
200 year 480 minute winter	26.544	10.558
200 year 600 minute summer	33.402	9.136
200 year 600 minute winter	22.822	9.136
200 year 720 minute summer	30.287	8.117
200 year 720 minute winter	20.355	8.117
200 year 960 minute summer	25.568	6.733
200 year 960 minute winter	16.937	6.733
200 year 1440 minute summer	19.246	5.158
200 year 1440 minute winter	12.934	5.158
200 year 2160 minute summer	14.260	3.941
200 year 2160 minute winter	9.825	3.941
200 year 2880 minute summer	12.135	3.252
200 year 2880 minute winter	8.155	3.252
200 year 4320 minute summer	9.486	2.480
200 year 4320 minute winter	6.247	2.480
200 year 5760 minute summer	8.002	2.049
200 year 5760 minute summer	5.180	2.049
200 year 7200 minute summer	6.934	1.769
200 year 7200 minute summer	4.475	1.769
200 year 8640 minute summer	6.160	1.571
200 year 8640 minute winter	3.976	1.571
200 year 10080 minute summer	5.581	1.424
200 year 10080 minute summer	3.602	1.424
200 year +37% CC 15 minute summer	374.442	105.954
200 year +37% CC 15 minute summer	262.766	105.954
200 year +37% CC 30 minute summer	274.886	77.783
-	192.903	77.783
200 year +37% CC 30 minute winter 200 year +37% CC 60 minute summer	200.800	53.066
-		
200 year +37% CC 60 minute winter	133.407	53.066
200 year +37% CC 120 minute summer	132.314	34.967 34.967
200 year +37% CC 120 minute winter	87.907 105.449	34.967 27.136
200 year +37% CC 180 minute summer	105.449	27.130

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
200 year +37% CC 180 minute winter	68.545	27.136
200 year +37% CC 240 minute summer	85.535	22.604
200 year +37% CC 240 minute winter	56.827	22.604
200 year +37% CC 360 minute summer	67.707	17.423
200 year +37% CC 360 minute winter	44.011	17.423
200 year +37% CC 480 minute summer	54.736	14.465
200 year +37% CC 480 minute winter	36.365	14.465
200 year +37% CC 600 minute summer	45.761	12.517
200 year +37% CC 600 minute winter	31.267	12.517
200 year +37% CC 720 minute summer	41.493	11.121
200 year +37% CC 720 minute winter	27.886	11.121
200 year +37% CC 960 minute summer	35.028	9.224
200 year +37% CC 960 minute winter	23.203	9.224
200 year +37% CC 1440 minute summer	26.367	7.067
200 year +37% CC 1440 minute winter	17.720	7.067
200 year +37% CC 2160 minute summer	19.536	5.399
200 year +37% CC 2160 minute winter	13.461	5.399
200 year +37% CC 2880 minute summer	16.624	4.456
200 year +37% CC 2880 minute winter	11.173	4.456
200 year +37% CC 4320 minute summer	12.996	3.398
200 year +37% CC 4320 minute winter	8.559	3.398
200 year +37% CC 5760 minute summer	10.963	2.806
200 year +37% CC 5760 minute winter	7.096	2.806
200 year +37% CC 7200 minute summer	9.500	2.423
200 year +37% CC 7200 minute winter	6.131	2.423
200 year +37% CC 8640 minute summer	8.439	2.153
200 year +37% CC 8640 minute winter	5.447	2.153
200 year +37% CC 10080 minute summer	7.646	1.951
200 year +37% CC 10080 minute winter	4.935	1.951

Node Event	US Node	Peak (mins)	Lev (m		Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
8640 minute winter	Basin	5880	•	, ,	114.4	-	71.0200	0.0000	ОК
	ink Even	-	US	Link		tflow	Dischar		
(Upst	ream De	epth)	Node			(I/s)	Vol (m	3)	
8640 (minute v	vinter	Basin	Hydro-Brak	«e®	49.0	16342	2.9	

Results for 30 year Critical Storm Duration.	Lowest mass balance: 99.99%	

Node Event	US Node	Peak (mins)	Lev (m		-	nflow (I/s)		lode I (m³)	Flood (m³)	Status
10080 minute winter	Basin	7380	98.7	93 0.7	93 1	166.0	2229	94.9100	0.0000	OK
(Upsti	nk Event ream De	pth)	US Node	Lin		Outf (I/	's)	Dischar Vol (m	3)	
10080 r	minute v	vinter	Basin	Hydro-E	srake®	4	49.4	21300	.9	

Results for 30 year +37% CC Critical Storm Duration. Lowest mass balance: 99.99%

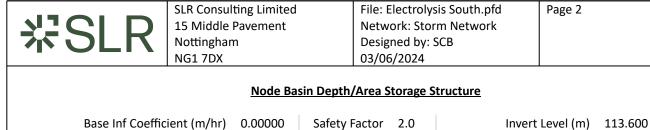
Να	ode	(mins)	(m)	-	Depth (m)	Inflow (I/s)		lode l (m³)	Flood (m³)	Status
10080 minute winter Ba	isin	8100	99.2	19	1.219	227.4	3482	25.1200	0.0000	ОК
Link E (Upstrear 10080 min	n Dep		US Node Basin		Link dro-Brake	(1)	flow /s) 49.4	Dischar Vol (m ⁴ 21210	3)	

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7620	98.963	0.963	()-1	27238.6100	0.0000	ОК
	nk Event ream De	_	US Node	Link	Outi (I/	flow Dischar /s) Vol (m	0-	

(Opstream Depth)	Node		(I/S)	voi (m°)
10080 minute winter	Basin	Hydro-Brake [®]	49.4	21445.6

Node Event	US Node	Peak (mins)	Lev (m			nflow (I/s)		lode l (m³)	Flood (m³)	Status
10080 minute winter	Basin	7860	•	<i>,</i> ,		207.6	-	55.6200	0.0000	ОК
	nk Event ream De		US Node	Lin	k	Outf (I/	-	Dischar Vol (m ⁴		
• •	minute v	• •	Basin	Hydro-E	rake®	• • •	49.3	21129	•	

23410.5


Results for 200 year +37% CC Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute winter	Basin	9180	99.593	1.593	(1/3) 284.4	46124.5300	0.0000	ОК
	nk Event ream De		US lode	Link	Outi (I/			

10080 minute winter Basin Hydro-Brake®

Flow+ v10.6.234 Copyright	· © 1988-2024	Causeway	Technologies Itd
	. 0 1000 202 1	causemay	reennonogies Lea

SLR Consult 15 Middle F Nottingham NG1 7DX	avement	File: Electrolysis So Network: Storm Ne Designed by: SCB 03/06/2024			
	Desig	n Settings			
Rainfall Methodology FSR Return Period (years) 1 Additional Flow (%) 0 FSR Region Scot M5-60 (mm) 17.0 Ratio-R 0.20 CV 0.75 Time of Entry (mins) 2.00	land and Ireland 00 0 0	Maximum Time of Concentration (mins)30.00Maximum Rainfall (mm/hr)50.0Minimum Velocity (m/s)1.00Connection TypeLevel SoffitsMinimum Backdrop Height (m)0.200Preferred Cover Depth (m)1.200Include Intermediate Ground√Enforce best practice design rules√			
	<u>Simulat</u>	tion Settings			
Rainfall Methodol FSR Reg M5-60 (n Rat Summer Winter Analysis Sp Skip Steady S	ion Scotland and Ir m) 17.000 o-R 0.200 CV 0.750 CV 0.840 eed Normal	eland Additiona Check I	own Time (mins) 240 Il Storage (m³/ha) 20.0 Discharge Rate(s) √ 1 year (l/s) 0.0 2 year (l/s) 0.0 30 year (l/s) 0.0 100 year (l/s) 0.0 Discharge Volume x		
	Storm	Durations			
156018030120240	360600480720	960 2160 1440 2880	432072001008057608640		
Return Per (years)	od Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)		
2	1 0 30 0 30 37 00 0 00 0 00 37 00 37	0 0 0 0	0 0 0 0 0 0		
	<u>Pre-developm</u>	ent Discharge Rate			
Positively Drain	Site Makeup Greer field Method IH124 ned Area (ha) SAAR (mm) Soil Index 1 SPR 0.10 Region 1 Factor 1 year 0.85	Growth Fa	Factor 30 year 1.95 actor 100 year 2.48 etterment (%) 0 QBar Q 1 year (I/s) Q 30 year (I/s) 100 year (I/s)		
	Node Basin Online	e Hydro-Brake [®] Cont	rol		
Flap Valve Replaces Downstream Link	x √	Objective Sump Available Product Number	(HE) Minimise upstream storage ✓ CTL-SHE-0213-2340-1000-2340		

Side Inf Coefficient (m/hr)			osity 1.00	Time	to half empty (mins)	115
Dept (m) 0.00	(m²)	Inf Area (m²) 0.0	Depth (m) 1.400	Area (m²) 25174.1	Inf Area (m²) 0.0	

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year 15 minute summer	82.148	23.245
1 year 15 minute winter	57.648	23.245
1 year 30 minute summer	59.299	16.780
1 year 30 minute winter	41.614	16.780
1 year 60 minute summer	44.644	11.798
1 year 60 minute winter	29.660	11.798
1 year 120 minute summer	30.990	8.190
, 1 year 120 minute winter	20.589	8.190
1 year 180 minute summer	25.650	6.601
, 1 year 180 minute winter	16.673	6.601
1 year 240 minute summer	21.411	5.658
, 1 year 240 minute winter	14.225	5.658
1 year 360 minute summer	17.661	4.545
1 year 360 minute winter	11.480	4.545
1 year 480 minute summer	14.807	3.913
1 year 480 minute winter	9.838	3.913
1 year 600 minute summer	12.657	3.462
1 year 600 minute winter	8.648	3.462
, 1 year 720 minute summer	11.689	3.133
, 1 year 720 minute winter	7.856	3.133
, 1 year 960 minute summer	10.151	2.673
1 year 960 minute winter	6.724	2.673
1 year 1440 minute summer	7.983	2.139
1 year 1440 minute winter	5.365	2.139
1 year 2160 minute summer	6.191	1.711
1 year 2160 minute winter	4.266	1.711
1 year 2880 minute summer	5.435	1.457
1 year 2880 minute winter	3.653	1.457
1 year 4320 minute summer	4.438	1.160
1 year 4320 minute winter	2.923	1.160
1 year 5760 minute summer	3.852	0.986
1 year 5760 minute winter	2.493	0.986
1 year 7200 minute summer	3.407	0.869
1 year 7200 minute winter	2.199	0.869
1 year 8640 minute summer	3.075	0.784
1 year 8640 minute winter	1.984	0.784
1 year 10080 minute summer	2.819	0.719
1 year 10080 minute winter	1.820	0.719
30 year 15 minute summer	182.169	51.548
30 year 15 minute winter	127.838	51.548
30 year 30 minute summer	131.901	37.323
30 year 30 minute winter	92.562	37.323
30 year 60 minute summer	97.144	25.672

Event	Peak Intensity (mm/br)	Average Intensity (mm/hr)
20 waar CO minute winter	(mm/hr)	
30 year 60 minute winter	64.540 65.121	25.672
30 year 120 minute summer		17.210
30 year 120 minute winter	43.265	17.210
30 year 180 minute summer	52.556	13.524
30 year 180 minute winter	34.163	13.524
30 year 240 minute summer	43.046	11.376
30 year 240 minute winter	28.598	11.376
30 year 360 minute summer	34.569	8.896
30 year 360 minute winter	22.471	8.896
30 year 480 minute summer	28.244	7.464
30 year 480 minute winter	18.764	7.464
30 year 600 minute summer	23.808	6.512
30 year 600 minute winter	16.267	6.512
30 year 720 minute summer	21.733	5.825
30 year 720 minute winter	14.606	5.825
30 year 960 minute summer	18.543	4.883
30 year 960 minute winter	12.283	4.883
30 year 1440 minute summer	14.187	3.802
30 year 1440 minute winter	9.535	3.802
30 year 2160 minute summer	10.697	2.956
30 year 2160 minute winter	7.371	2.956
30 year 2880 minute summer	9.222	2.471
30 year 2880 minute winter	6.198	2.471
30 year 4320 minute summer	7.342	1.920
30 year 4320 minute winter	4.835	1.920
30 year 5760 minute summer	6.271	1.605
30 year 5760 minute winter	4.059	1.605
30 year 7200 minute summer	5.482	1.399
30 year 7200 minute winter	3.538	1.399
, 30 year 8640 minute summer	4.902	1.250
, 30 year 8640 minute winter	3.164	1.250
30 year 10080 minute summer	4.462	1.138
, 30 year 10080 minute winter	2.880	1.138
30 year +37% CC 15 minute summer	249.571	70.620
30 year +37% CC 15 minute winter	175.138	70.620
30 year +37% CC 30 minute summer	180.704	51.133
30 year +37% CC 30 minute winter	126.810	51.133
30 year +37% CC 60 minute summer	133.087	35.171
30 year +37% CC 60 minute winter	88.420	35.171
30 year +37% CC 120 minute summer	89.216	23.577
30 year +37% CC 120 minute winter	59.273	23.577
30 year +37% CC 180 minute summer	72.002	18.528
30 year +37% CC 180 minute winter	46.803	18.528
30 year +37% CC 240 minute summer	58.972	15.585
30 year +37% CC 240 minute winter	39.180	15.585
30 year +37% CC 360 minute summer	47.359	12.187
30 year +37% CC 360 minute winter	30.785	12.187
30 year +37% CC 480 minute summer	38.694	10.226
30 year +37% CC 480 minute summer	25.707	10.226
30 year +37% CC 600 minute summer	32.617	8.922
30 year +37% CC 600 minute summer	22.286	8.922 8.922
30 year +37% CC 720 minute summer	22.280	8.922 7.980
So year 15770 CC 720 minute summer	23.774	7.500

Event	Peak Intensity (mm (br)	Average Intensity (mm (br)
20 years 27% CC 720 minute winter	(mm/hr)	(mm/hr)
30 year +37% CC 720 minute winter	20.010	7.980
30 year +37% CC 960 minute summer	25.404	6.690
30 year +37% CC 960 minute winter	16.828	6.690
30 year +37% CC 1440 minute summer	19.436	5.209
30 year +37% CC 1440 minute winter	13.062	5.209
30 year +37% CC 2160 minute summer	14.655	4.050
30 year +37% CC 2160 minute winter	10.098	4.050
30 year +37% CC 2880 minute summer	12.634	3.386
30 year +37% CC 2880 minute winter	8.491	3.386
30 year +37% CC 4320 minute summer	10.059	2.630
30 year +37% CC 4320 minute winter	6.624	2.630
30 year +37% CC 5760 minute summer	8.591	2.199
30 year +37% CC 5760 minute winter	5.561	2.199
30 year +37% CC 7200 minute summer	7.511	1.916
30 year +37% CC 7200 minute winter	4.847	1.916
30 year +37% CC 8640 minute summer	6.716	1.713
30 year +37% CC 8640 minute winter	4.334	1.713
30 year +37% CC 10080 minute summer	6.114	1.560
30 year +37% CC 10080 minute winter	3.946	1.560
100 year 15 minute summer	235.662	66.684
100 year 15 minute winter	165.377	66.684
100 year 30 minute summer	172.134	48.708
100 year 30 minute winter	120.796	48.708
100 year 60 minute summer	126.118	33.329
100 year 60 minute winter	83.790	33.329
100 year 120 minute summer	83.627	22.100
100 year 120 minute winter	55.560	22.100
100 year 180 minute summer	66.955	17.230
100 year 180 minute winter	43.522	17.230
100 year 240 minute summer	54.503	14.403
100 year 240 minute winter	36.210	14.403
100 year 360 minute summer	43.371	11.161
100 year 360 minute winter	28.192	11.161
100 year 480 minute summer	35.198	9.302
100 year 480 minute winter	23.385	9.302
100 year 600 minute summer	29.515	8.073
100 year 600 minute winter	20.167	8.073
100 year 720 minute summer	26.828	7.190
100 year 720 minute winter	18.030	7.190
100 year 960 minute summer	22.736	5.987
100 year 960 minute winter	15.061	5.987
100 year 1440 minute summer	17.216	4.614
100 year 1440 minute winter	11.571	4.614
100 year 2160 minute summer	12.838	3.548
100 year 2160 minute winter	8.846	3.548
100 year 2880 minute summer	10.977	2.942
100 year 2880 minute winter	7.377	2.942
100 year 4320 minute summer	8.639	2.259
100 year 4320 minute winter	5.689	2.259
100 year 5760 minute summer	7.320	1.874
100 year 5760 minute winter	4.738 6.364	1.874 1.623
100 year 7200 minute summer	0.304	1.023

Event	Peak	Average
	Intensity	Intensity
	(mm/hr)	(mm/hr)
100 year 7200 minute winter	4.107	1.623
100 year 8640 minute summer	5.667	1.446
100 year 8640 minute winter	3.657	1.446
100 year 10080 minute summer	5.143	1.312
100 year 10080 minute winter	3.319	1.312
200 year 15 minute summer	273.315	77.339
200 year 15 minute winter	191.800	77.339
200 year 30 minute summer	200.647	56.776
200 year 30 minute winter	140.805	56.776
200 year 60 minute summer	146.569	38.734
200 year 60 minute winter	97.377	38.734
200 year 120 minute summer	96.580	25.523
200 year 120 minute winter	64.165	25.523
200 year 180 minute summer	76.970	19.807
200 year 180 minute winter	50.033	19.807
200 year 240 minute summer	62.434	16.499
200 year 240 minute winter	41.480	16.499
200 year 360 minute summer	49.421	12.718
200 year 360 minute winter	32.125	12.718
200 year 480 minute summer	39.953	10.558
200 year 480 minute winter	26.544	10.558
200 year 600 minute summer	33.402	9.136
200 year 600 minute winter	22.822	9.136
200 year 720 minute summer	30.287	8.117
200 year 720 minute winter	20.355	8.117
200 year 960 minute summer	25.568	6.733
200 year 960 minute winter	16.937	6.733
200 year 1440 minute summer	19.246	5.158
200 year 1440 minute winter	12.934	5.158
200 year 2160 minute summer	14.260	3.941
200 year 2160 minute winter	9.825	3.941
200 year 2880 minute summer	12.135	3.252
200 year 2880 minute winter	8.155	3.252
200 year 4320 minute summer	9.486	2.480
200 year 4320 minute winter	6.247	2.480
200 year 5760 minute summer	8.002	2.049
200 year 5760 minute winter	5.180	2.049
200 year 7200 minute summer	6.934	1.769
200 year 7200 minute winter	4.475	1.769
200 year 8640 minute summer	6.160	1.571
200 year 8640 minute winter	3.976	1.571
200 year 10080 minute summer	5.581	1.424
200 year 10080 minute winter	3.602	1.424
200 year +37% CC 15 minute summer	374.442	105.954
200 year +37% CC 15 minute winter	262.766	105.954
200 year +37% CC 30 minute summer	274.886	77.783
200 year +37% CC 30 minute winter	192.903	77.783
200 year +37% CC 60 minute summer	200.800	53.066
200 year +37% CC 60 minute winter	133.407	53.066
200 year +37% CC 120 minute summer	132.314	34.967
200 year +37% CC 120 minute winter	87.907	34.967
200 year +37% CC 180 minute summer	105.449	27.136

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
200 year +37% CC 180 minute winter	68.545	27.136
200 year +37% CC 240 minute summer	85.535	22.604
200 year +37% CC 240 minute winter	56.827	22.604
200 year +37% CC 360 minute summer	67.707	17.423
200 year +37% CC 360 minute winter	44.011	17.423
200 year +37% CC 480 minute summer	54.736	14.465
200 year +37% CC 480 minute winter	36.365	14.465
200 year +37% CC 600 minute summer	45.761	12.517
200 year +37% CC 600 minute winter	31.267	12.517
200 year +37% CC 720 minute summer	41.493	11.121
200 year +37% CC 720 minute winter	27.886	11.121
200 year +37% CC 960 minute summer	35.028	9.224
200 year +37% CC 960 minute winter	23.203	9.224
200 year +37% CC 1440 minute summer	26.367	7.067
200 year +37% CC 1440 minute winter	17.720	7.067
200 year +37% CC 2160 minute summer	19.536	5.399
200 year +37% CC 2160 minute winter	13.461	5.399
200 year +37% CC 2880 minute summer	16.624	4.456
200 year +37% CC 2880 minute winter	11.173	4.456
200 year +37% CC 4320 minute summer	12.996	3.398
200 year +37% CC 4320 minute winter	8.559	3.398
200 year +37% CC 5760 minute summer	10.963	2.806
200 year +37% CC 5760 minute winter	7.096	2.806
200 year +37% CC 7200 minute summer	9.500	2.423
200 year +37% CC 7200 minute winter	6.131	2.423
200 year +37% CC 8640 minute summer	8.439	2.153
200 year +37% CC 8640 minute winter	5.447	2.153
200 year +37% CC 10080 minute summer	7.646	1.951
200 year +37% CC 10080 minute winter	4.935	1.951

Node Event	US Node	Peak (mins)	Lev (n		Depth (m)	Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	6780	113.	864	0.264	49.7	60	76.1500	0.0000	OK
	nk Event ream De		US Node		Link	Outfl (I/s		Dischar Vol (m		
10080 (minute v	vinter	Basin	Нус	dro-Brake®	[®] 2	3.0	8242	2.2	

Node Event	US Node	Peak (mins)	Lev (m	-	Depth (m)	Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7320	114.0)72	0.472	78.6	109	73.6500	0.0000	ОК
(Upst	ink Even r eam De minute	epth)	US Node Basin	Hye	Link dro-Brake ^o	Outf (I/s ® 2	-	Discharg Vol (m ³ 9723)	

Node Event	US Node	Peak (mins)	Lev (m	-	Depth (m)	Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	8100	114.3	317	0.717	107.7	168	16.3300	0.0000	OK
(Upst	ink Even ream De minute	epth)	US Node Basin	Hvo	Link dro-Brake ^o	Outf (I/ ®	-	Discharg Vol (m ³ 9757)	

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.99%								
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7560	114.169	0.569	90.6	13275.1600	0.0000	OK
	ink Evon	+	110	Link	Outf	low Dischar	10	

Link Event	US	Link	Outflow	Discharge
(Upstream Depth)	Node		(I/s)	Vol (m³)
10080 minute winter	Basin	Hydro-Brake [®]	23.4	9885.6

Results for 200 year Critical Storm Duration	on. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins)	Lev (m	-	Depth (m)	Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7740	114.2	234	0.634	98.3	148	20.4000	0.0000	ОК
(Upst	ink Even ream De minute	epth)	US Node Basin	Hy	Link dro-Brake ^o	Outf (I/: [®] 2	-	Discharg Vol (m ³ 9911)	

Node Event	US Node	Peak (mins)	Lev (m	-	Depth (m)	Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	9240	114.5	545	0.945	134.7	223	55.8300	0.0000	OK
(Upst	ink Even ream De minute	epth)	US Node Basin	Hvo	Link dro-Brake ^o	Outf (I/	-	Discharg Vol (m ³ 10544)	

SLR Consulti 15 Middle P Nottingham NG1 7DX	avement	ile: Injection_02.pfd Page 1 Ietwork: Storm Network Designed by: SCB 5/09/2024					
	Design	Settings					
Rainfall Methodology FSR Return Period (years) 1 Additional Flow (%) 0 FSR Region Scotl M5-60 (mm) 17.00 Ratio-R 0.200 CV 0.750 Time of Entry (mins) 2.00	and and Ireland 0	Maximum Time of Concentration (mins)30.00Maximum Rainfall (mm/hr)50.0Minimum Velocity (m/s)1.00Connection TypeLevel SoffitsMinimum Backdrop Height (m)0.200Preferred Cover Depth (m)1.200Include Intermediate Ground√Enforce best practice design rules√					
	Simulatio	n Settings					
Rainfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe Skip Steady St	on Scotland and Irel m) 17.000 b-R 0.200 CV 0.750 CV 0.840 ed Normal	Drain Down Time (mins)240Additional Storage (m³/ha)20.0Check Discharge Rate(s)√1 year (l/s)0.02 year (l/s)0.030 year (l/s)0.0100 year (l/s)0.0Check Discharge Volumex					
	Storm I	urations					
156018030120240		6021604320720010080140288057608640					
Return Peri (years)	od Climate Change (CC %)	Additional Area Additional Flow (A %) (Q %)					
1	1 0 30 0 30 37 00 0 00 0 00 37	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
	Pre-developme	t Discharge Rate					
Green Positively Drain	Site Makeup Greenfi ield Method IH124 ed Area (ha) SAAR (mm) Soil Index 1 SPR 0.10 Region 1 factor 1 year 0.85	eld Growth Factor 30 year 1.95 Growth Factor 100 year 2.48 Betterment (%) 0 QBar Q 1 year (I/s) Q 30 year (I/s) Q 100 year (I/s)					
	Node Basin Online H	ydro-Brake [®] Control					
Flap Valve Replaces Downstream Link Invert Level (m) Design Depth (m) Design Flow (I/s)	1.000 Min Out	Objective (HE) Minimise upstream storage Sump Available ✓ Product Number CTL-SHE-0069-2100-1000-2100 let Diameter (m) 0.100 Diameter (mm) 1200					

SLR 15 Middle Pavement No Nottingham Description	e: Injection_02.pfd Page 2 twork: Storm Network signed by: SCB /09/2024									
Node Basin Depth/Are	a Storage Structure									
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)75.600Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)										
Depth Area Inf Area (m) (m²) (m²) 0.000 1567.1 0.0	Depth Area Inf Area (m) (m²) (m²) 1.400 2437.6 0.0									
Rain	all									
Event	Peak Average Intensity Intensity (mm/hr) (mm/hr)									
1 year 15 minute summer 1 year 15 minute winter	82.148 23.245 57.648 23.245									
1 year 30 minute summer	59.299 16.780									
1 year 30 minute winter	41.614 16.780									
1 year 60 minute summer	44.644 11.798									
1 year 60 minute winter	29.660 11.798									
1 year 120 minute summer 1 year 120 minute winter	30.9908.19020.5898.190									
1 year 120 minute winter 1 year 180 minute summer	25.650 6.601									
1 year 180 minute vinter	16.673 6.601									
1 year 240 minute summer	21.411 5.658									
1 year 240 minute winter	14.225 5.658									
1 year 360 minute summer	17.661 4.545									
1 year 360 minute winter	11.480 4.545									
1 year 480 minute summer 1 year 480 minute winter	14.807 3.913 9.838 3.913									
1 year 480 minute winter 1 year 600 minute summer	9.838 3.913 12.657 3.462									
1 year 600 minute summer	8.648 3.462									
1 year 720 minute summer	11.689 3.133									
1 year 720 minute winter	7.856 3.133									
1 year 960 minute summer	10.151 2.673									
1 year 960 minute winter	6.724 2.673									
1 year 1440 minute summe										
1 year 1440 minute winter	5.365 2.139 6.191 1.711									
1 year 2160 minute summe 1 year 2160 minute winter	4.266 1.711									
1 year 2100 minute winter 1 year 2880 minute summe										
1 year 2880 minute winter	3.653 1.457									
1 year 4320 minute summe										
1 year 4320 minute winter	2.923 1.160									
1 year 5760 minute summe										
1 year 5760 minute winter	2.493 0.986									
1 year 7200 minute summe										
1 year 7200 minute winter 1 year 8640 minute summe	2.199 0.869 3.075 0.784									
1 year 8640 minute summe	1.984 0.784									
1 year 10080 minute summ										
1 year 10080 minute winter	1.820 0.719									
30 year 15 minute summer	182.169 51.548									
30 year 15 minute winter	127.838 51.548									
30 year 30 minute summer	131.901 37.323									

92.562

97.144

37.323

25.672

30 year 30 minute winter

30 year 60 minute summer

Event	Peak Intensity	Average Intensity
	(mm/hr)	(mm/hr)
30 year 60 minute winter	64.540	25.672
30 year 120 minute summer	65.121	17.210
30 year 120 minute winter	43.265	17.210
30 year 180 minute summer	52.556	13.524
30 year 180 minute winter	34.163	13.524
30 year 240 minute summer	43.046	11.376
30 year 240 minute winter	28.598	11.376
30 year 360 minute summer	34.569	8.896
30 year 360 minute winter	22.471	8.896
30 year 480 minute summer	28.244	7.464
30 year 480 minute winter	18.764	7.464
30 year 600 minute summer	23.808	6.512
30 year 600 minute winter	16.267	6.512
30 year 720 minute summer	21.733	5.825
30 year 720 minute winter	14.606	5.825
30 year 960 minute summer	18.543	4.883
30 year 960 minute winter	12.283	4.883
30 year 1440 minute summer	14.187	3.802
30 year 1440 minute winter	9.535	3.802
30 year 2160 minute summer	10.697	2.956
30 year 2160 minute winter	7.371	2.956
30 year 2880 minute summer	9.222	2.471
30 year 2880 minute winter	6.198	2.471
30 year 4320 minute summer	7.342	1.920
30 year 4320 minute winter	4.835	1.920
30 year 5760 minute summer	6.271	1.605
30 year 5760 minute winter	4.059	1.605
30 year 7200 minute summer	5.482	1.399
30 year 7200 minute winter	3.538	1.399
30 year 8640 minute summer	4.902	1.250
30 year 8640 minute winter	3.164	1.250
30 year 10080 minute summer	4.462	1.138
30 year 10080 minute winter	2.880	1.138
30 year +37% CC 15 minute summer	249.571	70.620
30 year +37% CC 15 minute winter	175.138	70.620
30 year +37% CC 30 minute summer	180.704	51.133
30 year +37% CC 30 minute winter	126.810	51.133
30 year +37% CC 60 minute summer	133.087	35.171
30 year +37% CC 60 minute winter	88.420	35.171
30 year +37% CC 120 minute summer	89.216	23.577
30 year +37% CC 120 minute winter	59.273	23.577
30 year +37% CC 180 minute summer	72.002	18.528
30 year +37% CC 180 minute winter	46.803	18.528
30 year +37% CC 240 minute summer	58.972	15.585
30 year +37% CC 240 minute winter	39.180	15.585
30 year +37% CC 360 minute summer	47.359	12.187
30 year +37% CC 360 minute winter	30.785	12.187
30 year +37% CC 480 minute summer	38.694	10.226
30 year +37% CC 480 minute winter	25.707	10.226
30 year +37% CC 600 minute summer	32.617	8.922
30 year +37% CC 600 minute winter	22.286	8.922
30 year +37% CC 720 minute summer	29.774	7.980

Event	Peak	Average
	Intensity	Intensity
	(mm/hr)	(mm/hr)
30 year +37% CC 720 minute winter	20.010	7.980
30 year +37% CC 960 minute summer	25.404	6.690
30 year +37% CC 960 minute winter	16.828	6.690
30 year +37% CC 1440 minute summer	19.436	5.209
30 year +37% CC 1440 minute winter	13.062	5.209
30 year +37% CC 2160 minute summer	14.655	4.050
30 year +37% CC 2160 minute winter	10.098	4.050
30 year +37% CC 2880 minute summer	12.634	3.386
30 year +37% CC 2880 minute winter	8.491	3.386
30 year +37% CC 4320 minute summer	10.059	2.630
30 year +37% CC 4320 minute winter	6.624	2.630
30 year +37% CC 5760 minute summer	8.591	2.199
30 year +37% CC 5760 minute winter	5.561	2.199
30 year +37% CC 7200 minute summer	7.511	1.916
30 year +37% CC 7200 minute winter	4.847	1.916
30 year +37% CC 8640 minute summer	6.716	1.713
30 year +37% CC 8640 minute winter	4.334	1.713
30 year +37% CC 10080 minute summer	6.114	1.560
30 year +37% CC 10080 minute winter	3.946	1.560
100 year 15 minute summer	235.662	66.684
100 year 15 minute winter	165.377	66.684
100 year 30 minute summer	172.134	48.708
100 year 30 minute winter	120.796	48.708
100 year 60 minute summer	126.118	33.329
100 year 60 minute winter	83.790	33.329
100 year 120 minute summer	83.627	22.100
100 year 120 minute winter	55.560	22.100
100 year 180 minute summer	66.955	17.230
100 year 180 minute winter	43.522	17.230
100 year 240 minute summer	54.503	14.403
100 year 240 minute winter	36.210	14.403
100 year 360 minute summer	43.371	11.161
100 year 360 minute winter	28.192	11.161
100 year 480 minute summer	35.198	9.302
100 year 480 minute winter	23.385	9.302
100 year 600 minute summer	29.515	8.073
100 year 600 minute winter	20.167	8.073
100 year 720 minute summer	26.828	7.190
100 year 720 minute winter	18.030	7.190
100 year 960 minute summer	22.736	5.987
100 year 960 minute winter	15.061	5.987
100 year 1440 minute summer	17.216	4.614
100 year 1440 minute winter	11.571	4.614
100 year 2160 minute summer	12.838	3.548
100 year 2160 minute winter	8.846	3.548
100 year 2880 minute summer	10.977	2.942
100 year 2880 minute winter	7.377	2.942
100 year 4320 minute summer	8.639	2.259
100 year 4320 minute winter	5.689	2.259
100 year 5760 minute summer	7.320	1.874
100 year 5760 minute winter	4.738	1.874
100 year 7200 minute summer	6.364	1.623

Event	Peak	Average
	Intensity	Intensity
	(mm/hr)	(mm/hr)
100 year 7200 minute winter	4.107	1.623
100 year 8640 minute summer	5.667	1.446
100 year 8640 minute winter	3.657	1.446
100 year 10080 minute summer	5.143	1.312
100 year 10080 minute winter	3.319	1.312
200 year 15 minute summer	273.315	77.339
200 year 15 minute winter	191.800	77.339
200 year 30 minute summer	200.647	56.776
200 year 30 minute winter	140.805	56.776
200 year 60 minute summer	146.569	38.734
200 year 60 minute winter	97.377	38.734
200 year 120 minute summer	96.580	25.523
200 year 120 minute winter	64.165	25.523
200 year 180 minute summer	76.970	19.807
, 200 year 180 minute winter	50.033	19.807
200 year 240 minute summer	62.434	16.499
, 200 year 240 minute winter	41.480	16.499
200 year 360 minute summer	49.421	12.718
200 year 360 minute winter	32.125	12.718
200 year 480 minute summer	39.953	10.558
200 year 480 minute winter	26.544	10.558
200 year 600 minute summer	33.402	9.136
200 year 600 minute winter	22.822	9.136
200 year 720 minute summer	30.287	8.117
200 year 720 minute winter	20.355	8.117
200 year 960 minute summer	25.568	6.733
200 year 960 minute winter	16.937	6.733
200 year 1440 minute summer	19.246	5.158
200 year 1440 minute winter	12.934	5.158
200 year 2160 minute summer	14.260	3.941
200 year 2160 minute winter	9.825	3.941
200 year 2880 minute summer	12.135	3.252
200 year 2880 minute winter	8.155	3.252
200 year 4320 minute summer	9.486	2.480
200 year 4320 minute winter	6.247	2.480
200 year 5760 minute summer	8.002	2.049
200 year 5760 minute winter	5.180	2.049
200 year 7200 minute summer	6.934	1.769
200 year 7200 minute winter	4.475	1.769
200 year 8640 minute summer	6.160	1.571
200 year 8640 minute winter	3.976	1.571
200 year 10080 minute summer	5.581	1.424
200 year 10080 minute winter	3.602	1.424
200 year +37% CC 15 minute summer	374.442	105.954
200 year +37% CC 15 minute winter	262.766	105.954
200 year +37% CC 30 minute summer	274.886	77.783
200 year +37% CC 30 minute winter	192.903	77.783
200 year +37% CC 60 minute summer	200.800	53.066
200 year +37% CC 60 minute winter	133.407	53.066
200 year +37% CC 120 minute summer	132.314	34.967
200 year +37% CC 120 minute winter	87.907	34.967
200 year +37% CC 180 minute summer	105.449	27.136
,		

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
200 year +37% CC 180 minute winter	68.545	27.136
200 year +37% CC 240 minute summer	85.535	22.604
200 year +37% CC 240 minute winter	56.827	22.604
200 year +37% CC 360 minute summer	67.707	17.423
200 year +37% CC 360 minute winter	44.011	17.423
200 year +37% CC 480 minute summer	54.736	14.465
200 year +37% CC 480 minute winter	36.365	14.465
200 year +37% CC 600 minute summer	45.761	12.517
200 year +37% CC 600 minute winter	31.267	12.517
200 year +37% CC 720 minute summer	41.493	11.121
200 year +37% CC 720 minute winter	27.886	11.121
200 year +37% CC 960 minute summer	35.028	9.224
200 year +37% CC 960 minute winter	23.203	9.224
200 year +37% CC 1440 minute summer	26.367	7.067
200 year +37% CC 1440 minute winter	17.720	7.067
200 year +37% CC 2160 minute summer	19.536	5.399
200 year +37% CC 2160 minute winter	13.461	5.399
200 year +37% CC 2880 minute summer	16.624	4.456
200 year +37% CC 2880 minute winter	11.173	4.456
200 year +37% CC 4320 minute summer	12.996	3.398
200 year +37% CC 4320 minute winter	8.559	3.398
200 year +37% CC 5760 minute summer	10.963	2.806
200 year +37% CC 5760 minute winter	7.096	2.806
200 year +37% CC 7200 minute summer	9.500	2.423
200 year +37% CC 7200 minute winter	6.131	2.423
200 year +37% CC 8640 minute summer	8.439	2.153
200 year +37% CC 8640 minute winter	5.447	2.153
200 year +37% CC 10080 minute summer	7.646	1.951
200 year +37% CC 10080 minute winter	4.935	1.951

Results for 1	year Critical Storm Duration. Lowest mass balance: 99.99	3%

Node Event	US Node	Pea (min	-	vel m)	Depth (m)	Inflow (I/s)		lode ol (m³)	Flood (m³)	Status
5760 minute winter	Basin	408	-/ \	857	0.257	6.0	-	5.8009	0.0000	ОК
Lin	k Event		US		Link	Outfl	ow	Discha	irge	
(Upstr	eam Dep	oth)	Node			(I/s	5)	Vol (n	n³)	
5760 m	inute wi	nter	Basin	Нус	dro-Brake®	9	2.1	52	22.9	

Node Event	US Node	Peal (mins	-	evel m)	Depth (m)	Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
8640 minute winter	Basin	648	0 76.	.094	0.494	7.7	85	8.0388	0.0000	ОК
	ik Event eam Der	oth)	US Node		Link	Outfl (I/s	-	Discha Vol (r	0-	
• •	inute wi	,	Basin	Нус	dro-Brake®		2.1	- •	39.8	

Results for 30 year +37% CC Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins	-	-	Depth (m)	Inflow (I/s)		lode ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	8040	, v	'	0.762	9.6	-	6.4600	0.0000	ОК
	ık Event eam Der	oth)	US Node		Link	Outf (I/	-	Discha Vol (m	0-	
• •	ninute w		Basin	Hy	dro-Brake	®	2.1	•	8.6	

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins)	-	-	Depth (m)	Inflow (I/s)	-	lode ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7800	76.2	208	0.608	8.1	107	6.1750	0.0000	ОК
	ık Event eam Der	oth)	US Node		Link	Outf (I/:	-	Discha Vol (m		
• •	ninute w		Basin	Hy	dro-Brake		2.1	•	2.4	

Results for 200 year Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins	-	-	Depth (m)	Inflow (I/s)		lode ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7920) 76.2	281	0.681	8.7	122	0.7360	0.0000	ОК
	ık Event eam Dei		US Node		Link	Outf (I/	-	Discha Vol (m	0	
• •	ninute w		Basin	Hy	dro-Brake		2.1	•	, 5.8	

Results for 200 year +37% CC Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins	-		Depth (m)	Inflow (I/s)		lode ol (m³)	Flood (m³)	Status
10080 minute winter	Basin	918	, , , , , , , , , , , , , , , , , , ,	, 587	0.987	12.0	186	3.5460	0.0000	ОК
	ık Event eam Dep	oth)	US Node		Link	Outf (I/:		Discha Vol (m		
10080 n	ninute w	inter	Basin	Hy	dro-Brake [®]	8	2.1	106	8.6	

	Consulting Limited Iiddle Pavement ingham 7DX	File: Treatment_02 Network: Storm No Designed by: SCB 05/09/2024	
	Des	ign Settings	
Rainfall Methodology Return Period (years) Additional Flow (%) FSR Region M5-60 (mm) Ratio-R CV Time of Entry (mins)	1 0 Scotland and Ireland 17.000 0.200 0.750	Maxim Min Minimum Prefer Include I	Concentration (mins) 30.00 um Rainfall (mm/hr) 50.0 imum Velocity (m/s) 1.00 Connection Type Level Soffits Backdrop Height (m) 0.200 red Cover Depth (m) 1.200 ntermediate Ground √ practice design rules √
	<u>Simul</u>	ation Settings	
M S Anal	ethodology FSR FSR Region Scotland and 5-60 (mm) 17.000 Ratio-R 0.200 ummer CV 0.750 Winter CV 0.840 lysis Speed Normal ready State x	Ireland Additiona Check	Down Time (mins) 240 al Storage (m³/ha) 20.0 Discharge Rate(s) √ 1 year (I/s) 0.0 2 year (I/s) 0.0 30 year (I/s) 0.0 100 year (I/s) 0.0 Discharge Volume x
	Stor	m Durations	
156030120	180360600240480720	960216014402880	432072001008057608640
	years) Climate Chang years) (CC %) 1 30 30 30 100	Additional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Additional Flow (Q %) 0 0 0 0 0
	200 200 3	0 0 37 0	0 0
	Pre-develop	ment Discharge Rate	
	Site Makeup Gre Greenfield Method IH1 Ily Drained Area (ha) SAAR (mm) Soil Index 1 SPR 0.10 Region 1 Growth Factor 1 year 0.85	24 Growth Fa B D	Factor 30 year 1.95 actor 100 year 2.48 etterment (%) 0 QBar Q 1 year (I/s) Q 30 year (I/s) 100 year (I/s)
	<u>Node Basin Onli</u>	ne Hydro-Brake [®] Con	trol
Flap Replaces Downstrea Invert Lev Design Dep Design Flo	vel (m) 48.600	Objective Sump Available Product Number Outlet Diameter (m)	(HE) Minimise upstream storage ✓ CTL-SHE-0047-1000-1000-1000 0.075 1200

Node Basin Depth/Area Storage Structure											
	Node Basin Depth/Area Storage Structure										
Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 48.600											
Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins)											
Depth Area Inf Area Depth Area Inf Area											
(m) (m²) (m²) (m) (m²) (m²)											
0.000 489.0 0.0 1.400 956.7 0.0											
Rainfall											
Event Peak Average											
Intensity Intensity (mm/hr) (mm/hr)											
1 year 15 minute summer 82.148 23.245											
1 year 15 minute winter 57.648 23.245											
, 1 year 30 minute summer 59.299 16.780											
1 year 30 minute winter 41.614 16.780											
1 year 60 minute summer 44.644 11.798											
1 year 60 minute winter 29.660 11.798											
1 year 120 minute summer 30.990 8.190											
1 year 120 minute winter 20.589 8.190											
1 year 180 minute summer 25.650 6.601											
1 year 180 minute winter 16.673 6.601 1 year 240 minute summer 21.411 5.658											
1 year 240 minute summer 21.411 5.058											
1 year 360 minute summer 17.661 4.545											
1 year 360 minute winter 11.480 4.545											
1 year 480 minute summer 14.807 3.913											
1 year 480 minute winter 9.838 3.913											
1 year 600 minute summer 12.657 3.462											
1 year 600 minute winter 8.648 3.462											
1 year 720 minute summer 11.689 3.133											
1 year 720 minute winter 7.856 3.133 1 year 960 minute summer 10.151 2.673											
1 year 960 minute summer 10.151 2.673 1 year 960 minute winter 6.724 2.673											
1 year 1440 minute summer 7.983 2.139											
1 year 1440 minute winter 5.365 2.139											
1 year 2160 minute summer 6.191 1.711											
1 year 2160 minute winter 4.266 1.711											
1 year 2880 minute summer 5.435 1.457											
1 year 2880 minute winter 3.653 1.457											
1 year 4320 minute summer 4.438 1.160											
1 year 4320 minute winter 2.923 1.160 1 year 5760 minute summer 3.852 0.986											
1 year 5760 minute summer 3.852 0.986 1 year 5760 minute winter 2.493 0.986											
1 year 7200 minute summer 3.407 0.869											
1 year 7200 minute winter 2.199 0.869											
1 year 8640 minute summer 3.075 0.784											
1 year 8640 minute winter 1.984 0.784											
1 year 10080 minute summer 2.819 0.719											
1 year 10080 minute winter 1.820 0.719											
30 year 15 minute summer 182.169 51.548											
30 year 15 minute winter 127.838 51.548 30 year 30 minute summer 131.901 37.323											
30 year 30 minute summer 131.901 37.323 30 year 30 minute winter 92.562 37.323											
30 year 60 minute summer 97.144 25.672											

Event	Peak Intensity (mm/hr)	Average Intensity (mm/br)
20 years CO minute winter		(mm/hr)
30 year 60 minute winter	64.540	25.672
30 year 120 minute summer	65.121	17.210
30 year 120 minute winter	43.265	17.210
30 year 180 minute summer	52.556	13.524
30 year 180 minute winter	34.163	13.524
30 year 240 minute summer	43.046	11.376
30 year 240 minute winter	28.598	11.376
30 year 360 minute summer	34.569	8.896
30 year 360 minute winter	22.471	8.896
30 year 480 minute summer	28.244	7.464
30 year 480 minute winter	18.764	7.464
30 year 600 minute summer	23.808	6.512
30 year 600 minute winter	16.267	6.512
30 year 720 minute summer	21.733	5.825
30 year 720 minute winter	14.606	5.825
30 year 960 minute summer	18.543	4.883
30 year 960 minute winter	12.283	4.883
30 year 1440 minute summer	14.187	3.802
30 year 1440 minute winter	9.535	3.802
30 year 2160 minute summer	10.697	2.956
30 year 2160 minute winter	7.371	2.956
30 year 2880 minute summer	9.222	2.471
30 year 2880 minute winter	6.198	2.471
30 year 4320 minute summer	7.342	1.920
30 year 4320 minute winter	4.835	1.920
30 year 5760 minute summer	6.271	1.605
30 year 5760 minute winter	4.059	1.605
30 year 7200 minute summer	5.482	1.399
30 year 7200 minute winter	3.538	1.399
30 year 8640 minute summer	4.902	1.250
30 year 8640 minute winter	3.164	1.250
30 year 10080 minute summer	4.462	1.138
30 year 10080 minute winter	2.880	1.138
30 year +37% CC 15 minute summer	249.571	70.620
30 year +37% CC 15 minute winter	175.138	70.620
30 year +37% CC 30 minute summer	180.704	51.133
30 year +37% CC 30 minute winter	126.810	51.133
30 year +37% CC 60 minute summer	133.087	35.171
30 year +37% CC 60 minute winter	88.420	35.171
30 year +37% CC 120 minute summer	89.216	23.577
30 year +37% CC 120 minute winter	59.273	23.577
30 year +37% CC 180 minute summer	72.002	18.528
30 year +37% CC 180 minute winter	46.803	18.528
30 year +37% CC 240 minute summer	58.972	15.585
30 year +37% CC 240 minute winter	39.180	15.585
30 year +37% CC 360 minute summer	47.359	12.187
30 year +37% CC 360 minute winter	30.785	12.187
30 year +37% CC 480 minute summer	38.694	10.226
30 year +37% CC 480 minute winter	25.707	10.226
30 year +37% CC 600 minute summer	32.617	8.922
30 year +37% CC 600 minute winter	22.286	8.922
30 year +37% CC 720 minute summer	29.774	7.980

Event	Peak Intensity	Average Intensity
	(mm/hr)	(mm/hr)
30 year +37% CC 720 minute winter	20.010	7.980
30 year +37% CC 960 minute summer	25.404	6.690
30 year +37% CC 960 minute summer	16.828	6.690
30 year +37% CC 1440 minute summer	19.436	5.209
30 year +37% CC 1440 minute summer	13.062	5.209
-		
30 year +37% CC 2160 minute summer	14.655	4.050
30 year +37% CC 2160 minute winter	10.098	4.050
30 year +37% CC 2880 minute summer	12.634	3.386
30 year +37% CC 2880 minute winter	8.491	3.386
30 year +37% CC 4320 minute summer	10.059	2.630
30 year +37% CC 4320 minute winter	6.624	2.630
30 year +37% CC 5760 minute summer	8.591	2.199
30 year +37% CC 5760 minute winter	5.561	2.199
30 year +37% CC 7200 minute summer	7.511	1.916
30 year +37% CC 7200 minute winter	4.847	1.916
30 year +37% CC 8640 minute summer	6.716	1.713
30 year +37% CC 8640 minute winter	4.334	1.713
30 year +37% CC 10080 minute summer	6.114	1.560
30 year +37% CC 10080 minute winter	3.946	1.560
100 year 15 minute summer	235.662	66.684
100 year 15 minute winter	165.377	66.684
100 year 30 minute summer	172.134	48.708
100 year 30 minute winter	120.796	48.708
100 year 60 minute summer	126.118	33.329
100 year 60 minute winter	83.790	33.329
100 year 120 minute summer	83.627	22.100
100 year 120 minute winter	55.560	22.100
100 year 180 minute summer	66.955	17.230
100 year 180 minute winter	43.522	17.230
100 year 240 minute summer	54.503	14.403
100 year 240 minute winter	36.210	14.403
100 year 360 minute summer	43.371	11.161
100 year 360 minute winter	28.192	11.161
100 year 480 minute summer	35.198	9.302
100 year 480 minute winter	23.385	9.302
100 year 600 minute summer	29.515	8.073
100 year 600 minute winter	20.167	8.073
100 year 720 minute summer	26.828	7.190
100 year 720 minute winter	18.030	7.190
100 year 960 minute summer	22.736	5.987
100 year 960 minute winter	15.061	5.987
100 year 1440 minute summer	17.216	4.614
100 year 1440 minute winter	11.571	4.614
100 year 2160 minute summer	12.838	3.548
100 year 2160 minute winter	8.846	3.548
100 year 2880 minute summer	10.977	2.942
100 year 2880 minute winter	7.377	2.942
100 year 4320 minute summer	8.639	2.259
100 year 4320 minute winter	5.689	2.259
100 year 5760 minute summer	7.320	1.874
100 year 5760 minute winter	4.738	1.874
100 year 7200 minute summer	6.364	1.623
-,		

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

Event	Peak Intensity	Average Intensity
100	(mm/hr)	(mm/hr)
100 year 7200 minute winter	4.107	1.623
100 year 8640 minute summer	5.667	1.446
100 year 8640 minute winter	3.657	1.446
100 year 10080 minute summer	5.143	1.312
100 year 10080 minute winter	3.319	1.312
200 year 15 minute summer	273.315	77.339
200 year 15 minute winter	191.800	77.339
200 year 30 minute summer	200.647	56.776
200 year 30 minute winter	140.805	56.776
200 year 60 minute summer	146.569	38.734
200 year 60 minute winter	97.377	38.734
200 year 120 minute summer	96.580	25.523
200 year 120 minute winter	64.165	25.523
200 year 180 minute summer	76.970	19.807
200 year 180 minute winter	50.033	19.807
200 year 240 minute summer	62.434	16.499
200 year 240 minute winter	41.480	16.499
200 year 360 minute summer	49.421	12.718
200 year 360 minute winter	32.125	12.718
200 year 480 minute summer	39.953	10.558
200 year 480 minute winter	26.544	10.558
200 year 600 minute summer	33.402	9.136
200 year 600 minute winter	22.822	9.136
200 year 720 minute summer	30.287	8.117
200 year 720 minute winter	20.355	8.117
200 year 960 minute summer	25.568	6.733
200 year 960 minute winter	16.937	6.733
200 year 1440 minute summer	19.246	5.158
200 year 1440 minute winter	12.934	5.158
200 year 2160 minute summer	14.260	3.941
200 year 2160 minute winter	9.825	3.941
200 year 2880 minute summer	12.135	3.252
200 year 2880 minute winter	8.155	3.252
200 year 4320 minute summer	9.486	2.480
200 year 4320 minute winter	6.247	2.480
200 year 5760 minute summer	8.002	2.049
200 year 5760 minute winter	5.180	2.049
200 year 7200 minute summer	6.934	1.769
200 year 7200 minute winter	4.475	1.769
200 year 8640 minute summer	6.160	1.571
200 year 8640 minute winter	3.976	1.571
200 year 10080 minute summer	5.581	1.424
200 year 10080 minute winter	3.602	1.424
200 year +37% CC 15 minute summer	374.442	105.954
200 year +37% CC 15 minute winter	262.766	105.954
200 year +37% CC 30 minute summer	274.886	77.783
200 year +37% CC 30 minute winter	192.903	77.783
200 year +37% CC 60 minute summer	200.800	53.066
200 year +37% CC 60 minute winter	133.407	53.066
200 year +37% CC 120 minute summer	132.314	34.967
200 year +37% CC 120 minute winter	87.907	34.967
200 year +37% CC 180 minute summer	105.449	27.136

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
200 year +37% CC 180 minute winter	68.545	27.136
200 year +37% CC 240 minute summer	85.535	22.604
200 year +37% CC 240 minute winter	56.827	22.604
200 year +37% CC 360 minute summer	67.707	17.423
200 year +37% CC 360 minute winter	44.011	17.423
200 year +37% CC 480 minute summer	54.736	14.465
200 year +37% CC 480 minute winter	36.365	14.465
200 year +37% CC 600 minute summer	45.761	12.517
200 year +37% CC 600 minute winter	31.267	12.517
200 year +37% CC 720 minute summer	41.493	11.121
200 year +37% CC 720 minute winter	27.886	11.121
200 year +37% CC 960 minute summer	35.028	9.224
200 year +37% CC 960 minute winter	23.203	9.224
200 year +37% CC 1440 minute summer	26.367	7.067
200 year +37% CC 1440 minute winter	17.720	7.067
200 year +37% CC 2160 minute summer	19.536	5.399
200 year +37% CC 2160 minute winter	13.461	5.399
200 year +37% CC 2880 minute summer	16.624	4.456
200 year +37% CC 2880 minute winter	11.173	4.456
200 year +37% CC 4320 minute summer	12.996	3.398
200 year +37% CC 4320 minute winter	8.559	3.398
200 year +37% CC 5760 minute summer	10.963	2.806
200 year +37% CC 5760 minute winter	7.096	2.806
200 year +37% CC 7200 minute summer	9.500	2.423
200 year +37% CC 7200 minute winter	6.131	2.423
200 year +37% CC 8640 minute summer	8.439	2.153
200 year +37% CC 8640 minute winter	5.447	2.153
200 year +37% CC 10080 minute summer	7.646	1.951
200 year +37% CC 10080 minute winter	4.935	1.951

Node Event	US Node	Peak (mins	-	vel m)	Depth (m)	Inflow (I/s)		Node ol (m³)	Flood (m³)	Status
4320 minute winter	Basin	318	, ,	865	0.265	2.7	-	2.5829	0.0000	ОК
	Link Event (Upstream Depth)		US Node		Link	Outfl (I/s		Discha Vol (r		
• •	inute wi		Basin	Нус	dro-Brake®		0.8	- •	58.9	

Node Event	US Node	Peal (min:	-	evel m)	Depth (m)	Inflow (I/s)		lode ol (m³)	Flood (m³)	Status
7200 minute winter	Basin	. 546	6 49.	.126	0.526	3.2	306	5.6829	0.0000	OK
	ık Event eam Dep	oth)	US Node		Link	Outfl (I/s	-	Discha Vol (n	0	
7200 m	inute wi	nter	Basin	Нус	dro-Brake [®]	B	0.8	28	30.8	

Results for 30 year +37% CC Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins)	Lev (m		epth m)	Inflow (I/s)		lode l (m³)	Flood (m³)	Status
10080 minute winter	Basin	7620	49.3	<i>,</i> ,	.762	3.6	-	3.8742	0.0000	ОК
Link Event			US	Liı	nk	Outfle		Discha	0	
• •	am Dep		ode			(I/s	· .	Vol (n	•	
10080 m	inute wi	nter B	asin	Hydro-	Brake [®]	^b	0.9	43	9.7	

Flow+ v10.8 Copyright	© 1988-2024 Causewa	v Technologies Ltd
1 IOW VIOLO COPYINGIN	S 1300 2024 Cuusewa	y iccliniologics Eta

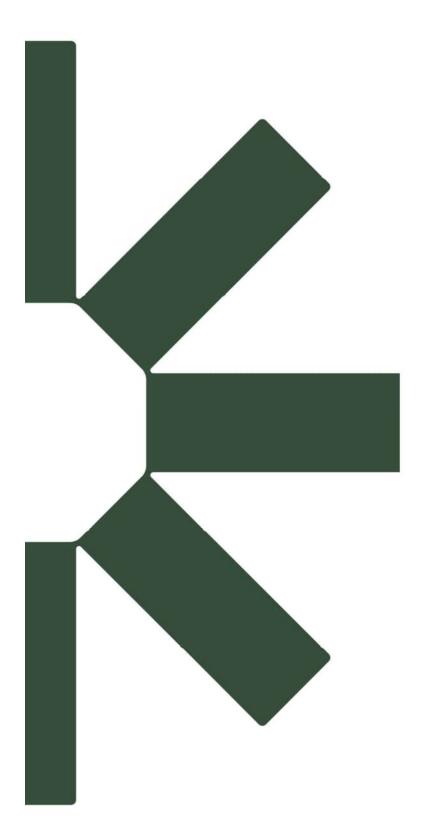
353.7

Results for 100 ye	ear Critical Storm Duration.	Lowest mass balance: 99.99%

Node Event	US	Peak	Level	Depth		Node	Flood	Status
8640 minute winter	Node Basin	(mins) 6540	(m) 49.223	(m) 0.623	(I/s) 3.3	Vol (m³) 373.2554	(m³) 0.0000	OK
Link Event US (Upstream Depth) Node			Link	Outfl (I/s				

8640 minute winter Basin Hydro-Brake®

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7560	49.287	. ,	3.3	418.5696	0.0000	ОК
	k Event eam Dep		US ode	Link	Outfl (I/s		. 0 -	
10080 m	•	•		ydro-Brake [®]		, ,	24.0	


486.5

Results for 200 year +37% CC Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute winter	Basin	7800	49.574	0.974	4.5	640.5258	0.0000	ОК
	k Event eam Dep		JS ode	Link	Outfle (I/s		0-	

10080 minute winter Basin Hydro-Brake®

Flow+ v10.8 Copyright © 1988-2024 Causeway	· Technologies Ltd

Making Sustainability Happen